Passing Time with a
SPIl Framebuffer Driver

Matt Porter
Texas Instruments

February 15, 2012

J"i; TEXAS
INSTRUMENTS

Overview

« How did this project come about? (or how to mix work and fun)
« SPI display controllers and the little bitty Adafruit display

« What's my obsession with Arduino and BeagleBone about?
 Linux, SPI, and display drivers

» Dissection of major organs in the driver

* Debugging: a tool for the masses, the OBLS

* Problems Problems Everywhere...

* Obligatory demo

« Q&A

2/15/12 2

13 TEXAS
INSTRUMENTS

The “Challenge”

Customer:
— “We don’t understand how to use EDMA in our Linux SPI display driver”

Field:
— “There are no examples! It's too complex in Linux! There’s no [fine] manual!”

Manager:
— “How can we help the customer?”

* Me:
— Reviews customer driver that ignores all existing Linux driver frameworks

— “Tell you what, it’ll probably be easier to just write their driver for them as an
example if the Linux FB and SPI docs are not sufficient.”

2/15/12 3

13 TEXAS
INSTRUMENTS

Adafruit 1.8” TFT LCD

http://www.adafruit.com/products/358

128x160 resolution, 16-bit color

ST7735 display controller
— http://www.adafruit.com/datasheets/ST7735R V0.2.pdf

3.3V/5.0V tolerant I/O

LCD and and controller on a breakout board with header strip

— Some assembly required

Chip selects provided for both the ST7735 controller and for a uSD slot

on the board
— uSD isn’t very exciting for our purposes

2114112 4

13 TEXAS
INSTRUMENTS

ST7735 display controller

SPI or parallel connection

Internal display data RAM contents drive display output

In 4-wire serial mode, requires MOSI, CS, SCLK, RESET, and D/C
— D/C (Data/Command mode) is an out-of-band signal driving SPI bus

transfers to either the internal RAM or the internal register file, respectively

SPI Mode 3
— CPOL=1 (clock base high)

— CPHA=1 (data setup on falling edge, latch on rising edge)

Max clock frequency of 15MHz
— More on this later...

2/14/12 °

13 TEXAS
INSTRUMENTS

ST7735 display controller

* Pixel formats
— RGB444
— RGB565
— RGB666

« Basic operation
— Send commands to init controller for display specific settings
— Configure internal ram row/column window to write when data asserted
— Assert data mode and perform SPI transfers to write pixel data

2/15/12 ©

13 TEXAS
INSTRUMENTS

Arduino and BeagleBone

« The differences are quickly obvious
— Arduino carries a lowly microcontroller and minimal peripheral support
— Beaglebone carries a Cortex A8 core and loads of peripherals

 But what makes them similar?

— Design choices...BeagleBone set out to fill in the higher end need for
hobbyists to interface with an SoC that runs Linux has much more
processing power.

» Both provide standardized expansion headers for standardized shields or capes to
be stacked.

« 5V or 3.3V tolerant I/0O (depends on Arduino model) for simple interfacing

— Both have strong communities

 Just about every part or breakout board you can buy at popular outlets like
Sparkfun and Adafruit have Arduino libraries

» Beagleboard.org has an active community for existing boards and many of those
users are also using BeagleBone

2114112 7

13 TEXAS
INSTRUMENTS

Expansion Headers on the BeagleBone

« Two 48 pin expansion connectors P8 and P9

* P8 has pins with GPIO, GPMC, LCD, Timers, PWM/QEP, McASP,
UART and MMC capabilities

* P9 has pins with GPIO, SPI, 12C, GPMC, MII/GMII/RGMII, UART,
Timers, PWM, CAN, McASP, and MMC

 All expansion header |/O is 3.3V
— Easy interfacing of current parts and breakout boards

* P9 has everything we need to interface the Adafruit 1.8" LCD

2/14/12 8

13 TEXAS
INSTRUMENTS

BeagleBone P9 Expansion Header

SIGNAL NAME PIN CONN PIN SIGNAL NAME
GND 1 2 GND
VDOD_3V3EXP | 3 4 | VDD_3V3EXP
VDD_S5V 5 6 vDD_5V
SYS_5V 7 8 SYS_ SV
PWR_BUT* 9 10 A10 SYS RESETn
UARTA_RXD T17 11 12 uU1g GPIO1_28
UART4_TXD u17 13 14 u1a EHRPWM 1A
GPIO1_16 R13 15 16 T14 EHRPWM1B
12C1_SCL Al6 17 18 B16 12C1_SDA
12C2_SCL D17 19 20 D18 12C2_SDA
UART2_TXD B17 21 22 A17 UART2_RXD
GPIO1_17 V14 23 24 D15 UART1_TXD
GPIO3_21 Ald 25 26 D16 UART1_RXD
GPIO3_19 C13 27 28 €12 SPI1_CS0
SPI1_DO B13 29 30 D12 SPI1 D1
SPI1_SCLK Al3 31 32 | vDD_ADC
AINA c8 33 34 | GNDA_ADC
AING AS 35 36 AS AINS
AIN2 87 37 38 A7 AIN3
AINO 86 39 40 c7 AIN1
CLKOUT2 D14 41 42 C18 GPIOD_7
GND 43 44 GND
GND - - GND 2/14/12 9

13 TEXAS
INSTRUMENTS

Interfacing BeagleBone and 1.8” LCD

SPI1_SCLK

SPI1_D1

SPI1_CS0

GPIO3_21

CONN

1 2

3 4

5 6

7 8

9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
as a6

GPIO3_19

2/15/1210

13 TEXAS
INSTRUMENTS

Writing a Driver - The Wrong Way ™

Ignore the Linux SPI framework

Ignore the Linux framebuffer framework

Ignore the Linux GPIO framework

Ignore the platform pinmux (or generic pinctrl/pinmux) framework

Write a misc driver
— Implement your own pinmux routines, bang on hardware directly
— Implement your own GPIO routines, bang on hardware directly
— Implement your own SPI transfer routines, banging on the hardware directly
— Implement a display driver by transferring a display buffer via write()

13 TEXAS
INSTRUMENTS

Writing the Driver — The Right Way ™

When in doubt — assume everything you're about to do has been done
before

Linux SPI subsystem
— http://www.kernel.org/doc/Documentation/spi/spi-summary

Linux GPIO subsystem
— http://kernel.org/doc/Documentation/gpio.txt

Linux framebuffer subsystem
— http://kernel.org/doc/Documentation/fb/framebuffer.txt
— http://kernel.org/doc/Documentation/fb/deferred-io.txt

Pinmuxing might be the only thing that’'s underdocumented and
completely arch specific (today)...but there are examples.

13 TEXAS
INSTRUMENTS

Registering the SPI device

static const struct st7735fb_platform_data bone_st7735fb_data = {
.rst_gpio = GPIO_TO_PIN(3, 19),

Convert the ST7735 reset
.dc_gpio = GPIO_TO_PIN(, 21), signal on GPIO 3_19to a
unique Linux GPIO value.

Convert the ST7735 data/
command signal on GPIO
3 21 to a unique Linux
GPI0O value.

l,
INSTRUMENTS

Registering the SPI device

static struct spi_board_info bone_spi1_slave_info[] ={

{

.modalias
.platform_data
irq
.max_speed_hz
.bus_num
.chip_select

.mode

= "adafruit_tft18",

= &bone_st7735fb_data,
= -1 ’

= 8000000,
=D, m——— |
=0,

= SPI_MODE_3,

McSPI bus numbering
starts at 1 so spit is
bus 2.

McSPI bus numbering
starts at 1 so spit is
bus 2.

Mode 3 corresponds

to CPOL/CPHA == 1.

l,
INSTRUMENTS

Registering the SPI device

[* setup spi1 */

static void spi1_init(int evm_id, int profile) DO NOT forget to set
{ up your platform’s pin
muxes!!!

setup_pin_mux(spi1_pin_mux);
spi_register_board_info(am335x_spi1_slave _info,
ARRAY_SIZE(am335x_spi1_slave_info));

return;

} Finally! Register our SPI

slave device(s) with the
device model.

i3 TEXAS
INSTRUMENTS

Registering the SPI driver

static struct spi_driver st7735fb_driver = {
driver = {
.name ="st7735fb",
.owner =THIS MODULE,

2

Our framebuffer driver

id_table = st7735fb_ids, entry point. Use the

.probe = st7735fb_probe, existing FB skeletonfb
_ or another similar

.-remove = devexit_p(st7735fb_remove), driver from here.

i3 TEXAS
INSTRUMENTS

Framebuffer Deferred I/O

 Traditional framebuffer driver relies on video memory on the “graphics
card” or in system memory which directly drives the display.

— This framebuffer is what is exposed to userspace via mmap().

« For SPI and other indirect bus connections to a display controller, we
can’t directly expose the internal display controller memory to
userspace.

— USB DisplayLink

« With deferred 1/O and an indirect display connection, userspace can be
presented with a kernel buffer that can be mmaped
— Userspace writes to mmapped buffer

— Deferred I/O framework records page faults and maintains a list of modified
pages to pass to the device driver deferred i/o handler on a periodic basis

— Driver handler then performs bus-specific transfers to move the data from
the modified pages to the display controller

13 TEXAS
INSTRUMENTS

Using FB Deferred I/O

static void st7735fb_deferred_io(struct fb_info *info, struct list_head *pagelist)

{
st7735fb_update_display(info->par);

static struct fb_deferred_io st7735fb_defio = {
.delay = HZ/20,
.deferred_io = st7735fb_deferred o,

info->fbdefio = &st7735fb_defio;

fb_deferred_io_init(info);

13 TEXAS

INSTRUMENTS

Using FB Deferred I/O

static void st7735fb_update_display(struct st7735fb_par *par)

{

int ret = 0;

u8 *vmem = par->info->screen_base;

[* Set row/column data window */

st7735_set_addr_win(par, 0, 0, WIDTH-1, HEIGHT-1);

[* Internal RAM write command */

st7735_write_cmd(par, ST7735_RAMWR);

ret = st7735_write_data_buf(par, vmem, WIDTH*HEIGHT*2);
if (ret <0)

pr_err("%s: spi_write failed to update display buffer\n”, par->info->fix.id);

13 TEXAS

INSTRUMENTS

Bench Tools for Debugging

« JTAG
— External (BDI2000/3000, Flyswatter, etc)
— Onboard (BeagleBone has FTDI2232H)
— OpenOCD (http://openocd.sourceforge.net/)

» Logic Analyzer

— Salae ($149)
* http://www.saleae.com

— Open Bench Logic Sniffer ($50)

« http://dangerousprototypes.com/docs/Open_Bench_Logic_Sniffer

* http://ols.Ixtreme.nl/
« http://sigrok.org/wiki/Main_Page

13 TEXAS
INSTRUMENTS

OBLS breakdown

» Logic Analyzer

» 16 buffered channels (-0.5V to 7V tolerant)
— Additional 16 channels can be enabled by adding a buffered “wing”

* Up to 200MHz bandwidth depending on channel configuration
« USB powered

« USB connectivity (CDC ACM)

« Completely open hardware

« Many client choices

13 TEXAS
INSTRUMENTS

OLS Software Tools

 Modified SUMP
— Java

« OLS (alternative java client)

— Java
— Several protocol decoders

« Sigrok
— Cross platform C

— Extendable with Python-based protocol decoders
« Some early ones in place

13 TEXAS

INSTRUMENTS

OLS In Action

OxF8 (v)

OxED (i)

0xD7 (x)

OxES (a)

0xD7 (x)

13 TEXAS
INSTRUMENTS

Working through some problems

 Tried the display on an Arduino Uno first, gotta love how everything
comes with an Arduino sketch library these days

— Same sequence on BeagleBone, epic falil

« AM335x TRM shows SPI1_DO0 being the MOSI output, it is not. MOSI is
found on SPI1_D1

 Originally tried to drive at max 15MHz SPI clock rate, this was another
fail.
— The Adafruit breakout board adds a CD4050B level shifter to be 5V tolerant
for Arduino. This chip is slow and limits the clock rate to <10MHz, driving my
change to 8MHz for the spi device registration.

— Some hardware hacks can get around this:

« http://fabienroyer.wordpress.com/2011/05/29/driving-an-adafruit-st7735-tft-display-
with-a-netduino/

13 TEXAS
INSTRUMENTS

Working through some problems

« The 16-bit pixel format presented an issue with userspace compatibility

— All userspace application assume that framebuffers are organized in a
native endian format.

— On our little endian ARM system, the mmaped shadow framebuffer is
written in native little endian.

— SPI buffer transfers in 8-bit data mode required by the ST7735 do a byte
swap by nature of the byte-wise addressing of the PIO or DMA based
memory access

» Have to present the SPI adapter driver with a byte swapped shadow buffer

* Driver has hack which byte swaps the buffer before doing a spi_write() on every
deferred_io update. This allows unmodified use existing FB API applications

13 TEXAS
INSTRUMENTS

Display and Logic Analyzer Demo

 fbv displaying a JPEG

« Capture and SPI protocol decode of display transferring framebuffer
data during display update

13 TEXAS
INSTRUMENTS

Q&A

« ST7735FB driver
— https://github.com/ohporter/linux-am33x/tree/st7735fb

« ST7586FB driver
— https://github.com/ohporter/linux/tree/st7586fb

« Enlightenment running on the ST7735FB driver
— http://www.youtube.com/watch?v=MIb-1ZeVik0

13 TEXAS
INSTRUMENTS

