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Overview

« How did this project come about? (or how to mix work and fun)
« SPI display controllers and the little bitty Adafruit display

« What's my obsession with Arduino and BeagleBone about?
 Linux, SPI, and display drivers

» Dissection of major organs in the driver

* Debugging: a tool for the masses, the OBLS

* Problems Problems Everywhere...

* Obligatory demo

« Q&A
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The “Challenge”

Customer:
— “We don’t understand how to use EDMA in our Linux SPI display driver”

Field:
— “There are no examples! It's too complex in Linux! There’s no [fine] manual!”

Manager:
— “How can we help the customer?”

* Me:
— Reviews customer driver that ignores all existing Linux driver frameworks

— “Tell you what, it’ll probably be easier to just write their driver for them as an
example if the Linux FB and SPI docs are not sufficient.”
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Adafruit 1.8” TFT LCD

http://www.adafruit.com/products/358

128x160 resolution, 16-bit color

ST7735 display controller
— http://www.adafruit.com/datasheets/ST7735R V0.2.pdf

3.3V/5.0V tolerant I/O

LCD and and controller on a breakout board with header strip

— Some assembly required

Chip selects provided for both the ST7735 controller and for a uSD slot

on the board
— uSD isn’t very exciting for our purposes
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ST7735 display controller

SPI or parallel connection

Internal display data RAM contents drive display output

In 4-wire serial mode, requires MOSI, CS, SCLK, RESET, and D/C
— D/C (Data/Command mode) is an out-of-band signal driving SPI bus

transfers to either the internal RAM or the internal register file, respectively

SPI Mode 3
— CPOL=1 (clock base high)

— CPHA=1 (data setup on falling edge, latch on rising edge)

Max clock frequency of 15MHz
— More on this later...
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ST7735 display controller

* Pixel formats
— RGB444
— RGB565
— RGB666

« Basic operation
— Send commands to init controller for display specific settings
— Configure internal ram row/column window to write when data asserted
— Assert data mode and perform SPI transfers to write pixel data
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Arduino and BeagleBone

« The differences are quickly obvious
— Arduino carries a lowly microcontroller and minimal peripheral support
— Beaglebone carries a Cortex A8 core and loads of peripherals

 But what makes them similar?

— Design choices...BeagleBone set out to fill in the higher end need for
hobbyists to interface with an SoC that runs Linux has much more
processing power.

» Both provide standardized expansion headers for standardized shields or capes to
be stacked.

« 5V or 3.3V tolerant I/0O (depends on Arduino model) for simple interfacing

— Both have strong communities

 Just about every part or breakout board you can buy at popular outlets like
Sparkfun and Adafruit have Arduino libraries

» Beagleboard.org has an active community for existing boards and many of those
users are also using BeagleBone
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Expansion Headers on the BeagleBone

« Two 48 pin expansion connectors P8 and P9

* P8 has pins with GPIO, GPMC, LCD, Timers, PWM/QEP, McASP,
UART and MMC capabilities

* P9 has pins with GPIO, SPI, 12C, GPMC, MII/GMII/RGMII, UART,
Timers, PWM, CAN, McASP, and MMC

 All expansion header |/O is 3.3V
— Easy interfacing of current parts and breakout boards

* P9 has everything we need to interface the Adafruit 1.8" LCD
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BeagleBone P9 Expansion Header

SIGNAL NAME PIN CONN PIN SIGNAL NAME
GND 1 2 GND
VDOD_3V3EXP | 3 4 | VDD_3V3EXP
VDD_S5V 5 6 vDD_5V
SYS_5V 7 8 SYS_ SV
PWR_BUT* 9 10 A10 SYS RESETn
UARTA_RXD T17 11 12 uU1g GPIO1_28
UART4_TXD u17 13 14 u1a EHRPWM 1A
GPIO1_16 R13 15 16 T14 EHRPWM1B
12C1_SCL Al6 17 18 B16 12C1_SDA
12C2_SCL D17 19 20 D18 12C2_SDA
UART2_TXD B17 21 22 A17 UART2_RXD
GPIO1_17 V14 23 24 D15 UART1_TXD
GPIO3_21 Ald 25 26 D16 UART1_RXD
GPIO3_19 C13 27 28 €12 SPI1_CS0
SPI1_DO B13 29 30 D12 SPI1 D1
SPI1_SCLK Al3 31 32 | vDD_ADC
AINA c8 33 34 | GNDA_ADC
AING AS 35 36 AS AINS
AIN2 87 37 38 A7 AIN3
AINO 86 39 40 c7 AIN1
CLKOUT2 D14 41 42 C18 GPIOD_7
GND 43 44 GND
GND - - GND 2/14/12 9
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Interfacing BeagleBone and 1.8” LCD

SPI1_SCLK

SPI1_D1

SPI1_CS0

GPIO3_21

CONN

1 2

3 4

5 6

7 8

9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
as a6

GPIO3_19
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Writing a Driver - The Wrong Way ™

Ignore the Linux SPI framework

Ignore the Linux framebuffer framework

Ignore the Linux GPIO framework

Ignore the platform pinmux (or generic pinctrl/pinmux) framework

Write a misc driver
— Implement your own pinmux routines, bang on hardware directly
— Implement your own GPIO routines, bang on hardware directly
— Implement your own SPI transfer routines, banging on the hardware directly
— Implement a display driver by transferring a display buffer via write()
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Writing the Driver — The Right Way ™

When in doubt — assume everything you're about to do has been done
before

Linux SPI subsystem
— http://www.kernel.org/doc/Documentation/spi/spi-summary

Linux GPIO subsystem
— http://kernel.org/doc/Documentation/gpio.txt

Linux framebuffer subsystem
— http://kernel.org/doc/Documentation/fb/framebuffer.txt
— http://kernel.org/doc/Documentation/fb/deferred-io.txt

Pinmuxing might be the only thing that’'s underdocumented and
completely arch specific (today)...but there are examples.
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Registering the SPI device

static const struct st7735fb_platform_data bone_st7735fb_data = {
.rst_gpio = GPIO_TO_PIN(3, 19),

Convert the ST7735 reset
.dc_gpio = GPIO_TO_PIN(, 21), signal on GPIO 3_19to a
unique Linux GPIO value.

Convert the ST7735 data/
command signal on GPIO
3 21 to a unique Linux
GPI0O value.
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Registering the SPI device

static struct spi_board_info bone_spi1_slave_info[] ={

{

.modalias
.platform_data
irq
.max_speed_hz
.bus_num
.chip_select

.mode

= "adafruit_tft18",

= &bone_st7735fb_data,
= -1 ’

= 8000000,
=D, m——— |
=0,

= SPI_MODE_3,

McSPI bus numbering
starts at 1 so spit is
bus 2.

McSPI bus numbering
starts at 1 so spit is
bus 2.

Mode 3 corresponds

to CPOL/CPHA == 1.
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Registering the SPI device

[* setup spi1 */

static void spi1_init(int evm_id, int profile) DO NOT forget to set
{ up your platform’s pin
muxes!!!

setup_pin_mux(spi1_pin_mux);
spi_register_board_info(am335x_spi1_slave _info,
ARRAY_SIZE(am335x_spi1_slave_info));

return;

} Finally! Register our SPI

slave device(s) with the
device model.
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Registering the SPI driver

static struct spi_driver st7735fb_driver = {
driver = {
.name  ="st7735fb",
.owner =THIS MODULE,

2

Our framebuffer driver

id_table = st7735fb_ids, entry point. Use the

.probe = st7735fb_probe, existing FB skeletonfb
_ or another similar

.-remove = devexit_p(st7735fb_remove), driver from here.
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Framebuffer Deferred I/O

 Traditional framebuffer driver relies on video memory on the “graphics
card” or in system memory which directly drives the display.

— This framebuffer is what is exposed to userspace via mmap().

« For SPI and other indirect bus connections to a display controller, we
can’t directly expose the internal display controller memory to
userspace.

— USB DisplayLink

« With deferred 1/O and an indirect display connection, userspace can be
presented with a kernel buffer that can be mmaped
— Userspace writes to mmapped buffer

— Deferred I/O framework records page faults and maintains a list of modified
pages to pass to the device driver deferred i/o handler on a periodic basis

— Driver handler then performs bus-specific transfers to move the data from
the modified pages to the display controller

13 TEXAS
INSTRUMENTS




Using FB Deferred I/O

static void st7735fb_deferred_io(struct fb_info *info, struct list_head *pagelist)

{
st7735fb_update_display(info->par);

static struct fb_deferred_io st7735fb_defio = {
.delay = HZ/20,
.deferred_io = st7735fb_deferred o,

info->fbdefio = &st7735fb_defio;

fb_deferred_io_init(info);
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Using FB Deferred I/O

static void st7735fb_update_display(struct st7735fb_par *par)

{

int ret = 0;

u8 *vmem = par->info->screen_base;

[* Set row/column data window */

st7735_set_addr_win(par, 0, 0, WIDTH-1, HEIGHT-1);

[* Internal RAM write command */

st7735_write_cmd(par, ST7735_RAMWR);

ret = st7735_write_data_buf(par, vmem, WIDTH*HEIGHT*2);
if (ret <0)

pr_err("%s: spi_write failed to update display buffer\n”, par->info->fix.id);
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Bench Tools for Debugging

« JTAG
— External (BDI2000/3000, Flyswatter, etc)
— Onboard (BeagleBone has FTDI2232H)
— OpenOCD (http://openocd.sourceforge.net/)

» Logic Analyzer

— Salae ($149)
* http://www.saleae.com

— Open Bench Logic Sniffer ($50)

« http://dangerousprototypes.com/docs/Open_Bench_Logic_Sniffer

* http://ols.Ixtreme.nl/
« http://sigrok.org/wiki/Main_Page
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OBLS breakdown

» Logic Analyzer

» 16 buffered channels (-0.5V to 7V tolerant)
— Additional 16 channels can be enabled by adding a buffered “wing”

* Up to 200MHz bandwidth depending on channel configuration
« USB powered

« USB connectivity (CDC ACM)

« Completely open hardware

« Many client choices
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OLS Software Tools

 Modified SUMP
— Java

« OLS (alternative java client)

— Java
— Several protocol decoders

« Sigrok
— Cross platform C

— Extendable with Python-based protocol decoders
« Some early ones in place
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OLS In Action

OxF8 (v)

OxED (i)

0xD7 (x)

OxES (a)

0xD7 (x)
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Working through some problems

 Tried the display on an Arduino Uno first, gotta love how everything
comes with an Arduino sketch library these days

— Same sequence on BeagleBone, epic falil

« AM335x TRM shows SPI1_DO0 being the MOSI output, it is not. MOSI is
found on SPI1_D1

 Originally tried to drive at max 15MHz SPI clock rate, this was another
fail.
— The Adafruit breakout board adds a CD4050B level shifter to be 5V tolerant
for Arduino. This chip is slow and limits the clock rate to <10MHz, driving my
change to 8MHz for the spi device registration.

— Some hardware hacks can get around this:

« http://fabienroyer.wordpress.com/2011/05/29/driving-an-adafruit-st7735-tft-display-
with-a-netduino/
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Working through some problems

« The 16-bit pixel format presented an issue with userspace compatibility

— All userspace application assume that framebuffers are organized in a
native endian format.

— On our little endian ARM system, the mmaped shadow framebuffer is
written in native little endian.

— SPI buffer transfers in 8-bit data mode required by the ST7735 do a byte
swap by nature of the byte-wise addressing of the PIO or DMA based
memory access

» Have to present the SPI adapter driver with a byte swapped shadow buffer

* Driver has hack which byte swaps the buffer before doing a spi_write() on every
deferred_io update. This allows unmodified use existing FB API applications
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Display and Logic Analyzer Demo

 fbv displaying a JPEG

« Capture and SPI protocol decode of display transferring framebuffer
data during display update
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Q&A

« ST7735FB driver
— https://github.com/ohporter/linux-am33x/tree/st7735fb

« ST7586FB driver
— https://github.com/ohporter/linux/tree/st7586fb

« Enlightenment running on the ST7735FB driver
— http://www.youtube.com/watch?v=MIb-1ZeVik0
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