
CONFIDENTIAL INFORMATION

Intrinsyc Software 

Linux on eMMC

Optimizing for Performance

Ken Tough

Principal Engineer

ktough@intrinsyc.com

mailto:uktough@intrinsyc.com


2CONFIDENTIAL INFORMATION

What is eMMC?

 Solid state storage device on MMC bus

 Chip on PCB

 NAND flash based



3CONFIDENTIAL INFORMATION

Why eMMC matters

 Popular on embedded devices

 Cheap

 Flexible



4CONFIDENTIAL INFORMATION

eMMC characteristics

 Fast read access

 Fast read seek times

 Acceptable sequential write performance

 Poor random write performance



CONFIDENTIAL INFORMATION

MMC

Micro-Controller

Slower NAND
Flash

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

SRAM

Fast Cache
Flash

MMC 

Bus

Inside

Firmware



6CONFIDENTIAL INFORMATION

Inside the eMMC

 NAND flash arranged in pages

 Controller with temporary storage

 Wear levelling

 Free space management



7CONFIDENTIAL INFORMATION

Discard (TRIM)

 eMMC TRIM command

 Tells controller what is free

 TRIM blocks on format



8CONFIDENTIAL INFORMATION

eMMC scenarios

 Tablets, smart phones with lots of DRAM

 Netbooks with lots of DRAM

 Multimedia players, USB memory sticks



9CONFIDENTIAL INFORMATION

eMMC spec performance

 Typically emphasizes sequential write performance

 Random accesses hit eMMCs internal pipelines

 Frequently limited by eMMC’s Random IOPs limit

 Minimum OP time regardless of OP size

 Not often data BW limited

 ~200 IOPs (e.g. 4kB per OP)

 Analyze application’s eMMC read/writes patterns



10CONFIDENTIAL INFORMATION

Cache is King

 Alleviates write performance issues

 Improves read times even further

 Reduces NAND wear



11CONFIDENTIAL INFORMATION

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



12CONFIDENTIAL INFORMATION

MMC driver

 Maximum bandwidth enabled (8-bit, 50MHz)

 Enable DMA if option

 Power management

 Trim / vendor command support

 Benchmarking Log



13CONFIDENTIAL INFORMATION

Analysis at MMC/Block Level

0

5000

10000

15000

20000

25000
1 2 4 8 16 32 6
4

12
8

25
6

51
2

10
24

20
4

8

N
o

rm
al

iz
e

d
 C

o
u

n
t

Sectors per chunk

Histogram of chunk sizes

Reader

Surfing

Random



14CONFIDENTIAL INFORMATION

eMMC Read Times

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

m
ill

se
c

Read Chunk Size (sectors)



15CONFIDENTIAL INFORMATION

eMMC Write Times

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

m
il

li
se

c

Write Chunk Size (sectors)



16CONFIDENTIAL INFORMATION

 Wide variation in read/write times

 Big dependency on internal eMMC firmware

 Power Class support

 Geometry / technology

 Trim support

Vendor Performance



17CONFIDENTIAL INFORMATION

 Allows reads to bypass long writes

 Useful in very specific applications

 Small RAM

 Page/Block cache and IO Scheduler

 Internal eMMC Pipelines blocked anyway

 Multimedia apps and “long” buffering

MMC v4 High Priority Interrupt



18CONFIDENTIAL INFORMATION

Filesystems

 Focus on write performance

 Tests run using fsbench (3.0 kernel, OMAP3 aka 
Nook Color)

 Various low-level and high-level scenarios modelled

 EXT4, BTRFS, NILFS2 tested



19CONFIDENTIAL INFORMATION

Filesystem Benchmarks



20CONFIDENTIAL INFORMATION



21CONFIDENTIAL INFORMATION



22CONFIDENTIAL INFORMATION



23CONFIDENTIAL INFORMATION



24CONFIDENTIAL INFORMATION

EXT4 - a write

 Journal write (usually ~16K)

 inode update (usually 4K)

 Data goes into page cache



25CONFIDENTIAL INFORMATION

BTRFS - a write

 Update non-sync very fast

 Sync write puts tree leaves on eMMC

 Sync write is 4 non-sequential writes



26CONFIDENTIAL INFORMATION

NILFS2 - a write

 Log structured filesystem

 Stores the ‘update’

 One large (40K+) write

 Eventually “snapshot” needs flushing

 Initialization

 Recovery



27CONFIDENTIAL INFORMATION

EXT4 w/o journal

 Not too dangerous on embedded systems with 
battery

 Good performance due to improved sequentiality



28CONFIDENTIAL INFORMATION

BTRFS

 If not using a lot of fsync/fdatasync

 Great large write performance

 Terrible on small/medium sync writes

 Good performance on multiple writes



29CONFIDENTIAL INFORMATION

NILFS2

 Consistent performance

 Potentially much faster if eMMC part has fast 
sequential performance

 Should theoretically be the fastest :-)



30CONFIDENTIAL INFORMATION

EXT4 with journal

 If journaling is needed, consider RAM journal 
device

 Again RAM journal not as dangerous as you think

 Better than BTRFS on small/medium sync writes



31CONFIDENTIAL INFORMATION

I/O schedulers

 CFQ, noop, deadline

 Results are similar within ~10% range

 QOS considerations are more important than 
throughput



32CONFIDENTIAL INFORMATION

Filesystem layout

 No swap

 Align partitions to erase block boundaries

 Extents match erase blocks

 System design (multiple storage devices)



33CONFIDENTIAL INFORMATION

User space

 Avoid synchronization on files

 Avoid sync/fsync/fdatasync/etc

 Avoid small writes to files, better to buffer

 Don’t be afraid to read, be afraid to write!



34CONFIDENTIAL INFORMATION

Future

 Linaro project (www.linaro.org) working on 
improving eMMC experience

 eMMC 4.5 brings METADATA

http://www.linaro.org


35CONFIDENTIAL INFORMATION

Summary

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



36CONFIDENTIAL INFORMATION

Conclusion

 EXT4 (discard, ram/no journal) is probably your 
best bet

 Try out a couple of configurations for the eMMC 
you are targeting

 Benchmark per Vendor

 Avoid writes! :-)



37CONFIDENTIAL INFORMATION

Questions?


