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What is eMMC?

 Solid state storage device on MMC bus

 Chip on PCB

 NAND flash based
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Why eMMC matters

 Popular on embedded devices

 Cheap

 Flexible
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eMMC characteristics

 Fast read access

 Fast read seek times

 Acceptable sequential write performance

 Poor random write performance
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Inside the eMMC

 NAND flash arranged in pages

 Controller with temporary storage

 Wear levelling

 Free space management
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Discard (TRIM)

 eMMC TRIM command

 Tells controller what is free

 TRIM blocks on format
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eMMC scenarios

 Tablets, smart phones with lots of DRAM

 Netbooks with lots of DRAM

 Multimedia players, USB memory sticks
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eMMC spec performance

 Typically emphasizes sequential write performance

 Random accesses hit eMMCs internal pipelines

 Frequently limited by eMMC’s Random IOPs limit

 Minimum OP time regardless of OP size

 Not often data BW limited

 ~200 IOPs (e.g. 4kB per OP)

 Analyze application’s eMMC read/writes patterns
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Cache is King

 Alleviates write performance issues

 Improves read times even further

 Reduces NAND wear
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Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver
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Block Device

IO Scheduler

Filesystem Filesystem

User User User
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MMC driver

 Maximum bandwidth enabled (8-bit, 50MHz)

 Enable DMA if option

 Power management

 Trim / vendor command support

 Benchmarking Log
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Analysis at MMC/Block Level
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eMMC Read Times
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eMMC Write Times
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 Wide variation in read/write times

 Big dependency on internal eMMC firmware

 Power Class support

 Geometry / technology

 Trim support

Vendor Performance
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 Allows reads to bypass long writes

 Useful in very specific applications

 Small RAM

 Page/Block cache and IO Scheduler

 Internal eMMC Pipelines blocked anyway

 Multimedia apps and “long” buffering

MMC v4 High Priority Interrupt
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Filesystems

 Focus on write performance

 Tests run using fsbench (3.0 kernel, OMAP3 aka 
Nook Color)

 Various low-level and high-level scenarios modelled

 EXT4, BTRFS, NILFS2 tested
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Filesystem Benchmarks
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EXT4 - a write

 Journal write (usually ~16K)

 inode update (usually 4K)

 Data goes into page cache
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BTRFS - a write

 Update non-sync very fast

 Sync write puts tree leaves on eMMC

 Sync write is 4 non-sequential writes
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NILFS2 - a write

 Log structured filesystem

 Stores the ‘update’

 One large (40K+) write

 Eventually “snapshot” needs flushing

 Initialization

 Recovery
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EXT4 w/o journal

 Not too dangerous on embedded systems with 
battery

 Good performance due to improved sequentiality
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BTRFS

 If not using a lot of fsync/fdatasync

 Great large write performance

 Terrible on small/medium sync writes

 Good performance on multiple writes
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NILFS2

 Consistent performance

 Potentially much faster if eMMC part has fast 
sequential performance

 Should theoretically be the fastest :-)
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EXT4 with journal

 If journaling is needed, consider RAM journal 
device

 Again RAM journal not as dangerous as you think

 Better than BTRFS on small/medium sync writes
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I/O schedulers

 CFQ, noop, deadline

 Results are similar within ~10% range

 QOS considerations are more important than 
throughput
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Filesystem layout

 No swap

 Align partitions to erase block boundaries

 Extents match erase blocks

 System design (multiple storage devices)
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User space

 Avoid synchronization on files

 Avoid sync/fsync/fdatasync/etc

 Avoid small writes to files, better to buffer

 Don’t be afraid to read, be afraid to write!
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Future

 Linaro project (www.linaro.org) working on 
improving eMMC experience

 eMMC 4.5 brings METADATA

http://www.linaro.org
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Summary

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver
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Conclusion

 EXT4 (discard, ram/no journal) is probably your 
best bet

 Try out a couple of configurations for the eMMC 
you are targeting

 Benchmark per Vendor

 Avoid writes! :-)
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Questions?


