r g

Experiences with device tree
support development for
ARM based SoC's

Thomas Abraham <thomas.abraham@linaro.org>
Linaro Kernel Working Group
February 15", 2012

Pivsug oFhieid




Why device tree on ARM?

= ARM platforms rely on static list of platform devices for
all non-discoverable devices

= Too many board files

= Device tree is a simple tree like data structure that can
describe a non-discoverable hardware configuration to
the kernel

Platform devices are created at run-time by the kernel by
parsing the device tree nodes

Device nodes can carry configuration / platform data for the
devices

Allows kernel code and platform data to be decoupled

Linaro



Benefits of Device Tree for ARM
platforms

Decouples kernel code and SoC data

= Step towards realization of single kernel binary images for ARM based
platforms

Easier to add support for newer platforms

Reduces amount of board specific code
= Platform device and platform data are not statically defined

= Usually ends up with one board file per SoC.

Faster board ports

= For new board support for dt-enabled SoC, write a dts file with
minimal board specific fix-ups

Linaro



Current Status of Device Tree
Support for ARM Platforms

" Core device tree support for ARM upstreamed by
Grant Likely starting from Linux 3.0

" Platform matching and selection

" Runtime Device creation (platform and AMBA)

" Device tree support completed for PL310 (L2CC),
PL330 (DMAC), PL390 (GIC), PL192 (VIC) ARM
peripherals

= DT support for multiple ARM based SoC's

" SoC specific drivers modified to include DT support

Linaro



Typical Sequence of adding
device tree support

Add device tree support to board files
= Start with a new dt-enabled board file

" Enable DT support in existing board files

Create a SoC specific and board specific device tree
source files (dtsi and dts)

Enable DT support for system peripherals
* Interrupt Controller, GPIO, DMA

Enable DT support for peripheral drivers
= UART, 12C, SD/MMC, SPI, etc.

Linaro
%



Minimal Device Tree Enabled
board file

static Ghar.Gonsi. xexynosd210, dt compat[] initdata = {

. Sasung, exynosd21e”
NULL
h
©'DT MAGHINE START(EXYNOS4210 DT, "Samsung Exynos4 (Flattened Device Tree)")
T init irg = exynos4 init irq,
map 1o = exynos4210 dt map 1o,
.handle irg = gic handle irqg,
.1nit machine = exynos4210 dt machine init,
N 1)1 S .3/ 10 815 W :
cdt.compat . =.8Xnos4210 dt compat, :
Jrestart = exynos4 restart,
MACHINE END

. Linaro
WDDDID



Minimal Device Tree Source file

Jdts-vl/:
/ {

memory {
reg = <0x40000000 0x40000000>;

H

chosen {
bootargs ="root=/dev/ram@ rw ramdisk=8192 cnnsnle=tty5ﬂt2,11§25q];
H

Note: dtsi and dts files are located at arch/arm/boot/dts

Linaro



Compiling and Testing - 1

Enable Device Tree Support
" menuconfig - boot options - flattened device tree
= Or use 'select USE_OF' in Kconfig entry of the device tree
enabled board file
Build the kernel image
" make <defconfig>
" make menuconfig
" make ulmage

* Builds the dtc compiler as well
= scripts/dtc

Build the device tree blob

" make <dts filename>

Linaro
%



Compiling and Testing - 2

= Two options for passing dtb blob to kernel
= Use bootm command of u-boot

= Append dtb blob to the kernel image

= Option 1: Using the bootm command
® Build u-boot with CONFIG_OF_LIBFDT enabled
" bootm <kernel base> <initrd base> <dtb base>

" Example: bootm 40007000 - 40004000

= Option 2: Appending dtb blob to kernel

" menuconfig - boot options
= select “Use appended device tree blob”

= Used with legacy u-boot

Linaro



Compiling and Testing - 3

Uncompressing Linux... done, booting the kernel.

Booting Linux on physical CPU @

Linux version 3.3.8-rc1-00045-g5ab5d35 (thomas@Thomas) (gcc version 4.4.1 (Sourcery
CPU: ARMv7 Processor [412fc@91] revision 1 (ARMv7), cr=10¢5387d

- SEW RIRT.LVIET. nanaliasing. data. cachs.. VIT. Al as g J0SErHCTAN. SOEE s

Ignoring RAM at 80000000-8ffTTfff (vmalloc region overlap).

Ignoring RAM at 90000000-9fffffff (vmalloc region overlap).

Memory policy: ECC disabled, Data cache writealloc

CPU EXYNOS4210 (id 0x43210010)

53(24XX Clocks, Copyright 2004 Simtec Electronics

s3c register clksrc: clock armclk has no registers set

EXYNOS4: PLL settings, A=1000000000, M-800000000, E=96000000 \'=108000006
EXYNOS4: ARMCLK=1000000600, DMC=400000000, ACLK208=200000000
ACLK106=100000000, ACLK166=160000000, ACLK133=133333333

11 st maiAAARASR

Linaro




Instantiating platform devices
from device tree - 1

" Non-DT platforms relied on a static list of platform
devices for all non-discoverable devices

* For DT platforms, infrastructure exists to create
platform devices at runtime from device tree

= of platform_populate() call walks through the nodes in
device tree and creates platform devices from it

= Call of_platform_populate during machine_init
* Nodes should have a compatible property

* For creating platform devices for sub-nodes, provide a list
of all root nodes (second parameter)

(L Linaro



Instantiating platform devices
from device tree - 2

static void  init exynos4216@ dt machine init(void)
{
of platform populate(NULL, of default bus match table,
exynos4210 auxdata lookup, NULL);

watchdog@leeseees {

compatible = "samsung,s3c2410-wdt"; struct platform device dt watchdog = {

reg = <@x10060000 O0x100=; —
interrupts = <@ 43 0>; )
}: }I
rtc@leaieoees { .
compatible = "samsung,s3c6410-rtc"; struct platform_device dt rtc = {
reg = <@x10070000 O0x100=; — .-
interrupts = <@ 44 0=, <0 45 0=; )
}i '

keypad@lesaeess {
compatible = "samsung,s5pv210-keypad";
req = <@x100A0000 @x100=; >
interrupts = <@ 109 0>; }:

struct platform device dt keypad = {

Linaro




How to add minimal DT support
for Device Drivers - 1

Jdts-vl/;
/include/ "exynos4210.dtsi"

i

model = "Insignal Origen evaluation board based on Exynos4210";
compatible = "insignal,origen”, "samsung,exynos4210";

memory {
reg = <0x40000000 0x40000000>,;

i &

chosen {
bootargs ="root=/dev/ramé rw ramdisk=8192 console=ttySAC2,115200";
i
: watchdog@10060000 { :
£ compatible = "samsung,s3c2410-wdt";:
reg = <0x10060000 0x100>; :
interrupts = <@ 43 0>;

Linaro
r



How to add minimal DT support
for Device Drivers - 2

#ifdef CONFIG OF
static const struct of device id s3c2418 wdt match[] = {

{ cnmpa1:1b1é"T'""'é'é'ﬁ{l:.'ﬁ'ﬁ'gi"E'a'E'i'&'i'é"'ﬁH't'“"f:!',' """" E
{}' ---------------------------------------------------------------- r
&
|MODULE DEVICE TABLE(of, s3c2410 wdt match);
#endif

static struct platform driver s3c24l@wdt driver = {
.driver = {
.owner = THIS MODULE,

,.nﬁmﬁ ...... ﬁ"ﬂﬁac241@ ) S R ——

.probe = 53c2410wdt _probe,
. remove = devexit p(s3c2410wdt remove),

reg = ﬁﬂxlﬂﬂﬁﬂﬂﬂﬂ EHIHE}
interrupts = <@ 43 @>;

. L'
5 . Inaro



Retrieving driver configuration

data from device node -1

= Design the device tree node for the device that the
driver will instantiate

Compatible string
Register base and memory region length
IRQ numbers, if any

Bindings for supplying platform / configuration data to the
driver

List of gpios if any

Document the bindings in
Documentation/devicetree/bindings/

Linaro
%



Retrieving driver configuration
data from device node - 2

" Modify the driver to obtain the data from the
device node.

" Maintain a local copy of the platform data instead of
referencing pdev->dev.pdata for pdata values

= Add a runtime check to determine if a device node is
available.

" |f node is available, parse all properties which the
driver requires and populate the copy of local
platform data

= Avoid parsing device node for properties after probe
= Keep a copy of the property value in private data

Linaro



Retrieving driver configuration
data from device node - 3

= Non-DT ARM platforms will continue to exist in few more
kernel releases.

= Hence all DT support related additions should maintain compatibility
to non-DT platforms.

= Runtime determination of availability of a device tree node
can be determined by checking of node pointer

if (odev->dev->of _node) {
/* DT based instantiation */
} else {
/* Non-DT based instantiation */

Linaro



Retrieving driver configuration
data from device node - 4

i2c@l3860000 {

compatible = "samsung,s3c2440-i2c";
reg = <@x13800000 9x100=>;
interrupts = <@ 58 0>;
samsung,i2c-sda-delay = <100=;
samsung,i2c-max-bus-freq = =20000=;
gpios = <&gpdl © 2 3 @=,

<&kgpdl 1 2 3 0=>;

i¥

static void
s3c24xx _i2c parse dt(struct device node *np, struct s3c24xx i2c *i2c)

{
struct s3c2416@ platform i2c *pdata = i2c->pdata;
1t (!np)
pdata->bus num = -1; /* i2c¢ bus number is dynamically assigned */
of property read u32(np, "samsung,i2c-sda-delay", &pdata->sda delay);
of property read u32(np, "samsung,i2c-slave-addr", &pdata->slave addr);
of property read u32(np, "samsung,i2c-max-bus-freq",
(u32 *)&pdata->frequency);
}

Linaro




Setting up device names and
platform data - 1

Platform devices instantiated from device tree are not
assigned a device name
= Driver's looking up clocks would need device names

Device names can be assigned by
= Preparing a 'struct of dev_auxdata' lookup table
= Passing that table to of_platform_populate()

Use the same 'struct of _dev_auxdata' lookup table to
supply platform data, if required

Note: 'struct of _dev_auxdata' lookup table is a
temporary solution

Linaro



Setting up device names and
platform data - 2

serial@l3soeees {
compatible = "samsung,exynos421@-uart”;
req = <@x13800000 0x100=;
interrupts = <@ 52 0>;

h

serial@l3sleees {
compatible = "samsung,exynos421@-uart"”;
reg = <@x13810000 0x100=;
interrupts = <@ 53 0=;

b

static const struct of dev auxdata exynos4210 auxdata lookup[] initconst = {
OF DEV AUXDATA("samsung,exynos421@-uart", 8x13800000, "exynos421@-uart.@", NULL),
OF DEV AUXDATA("samsung,exynos4210-uart", 8x13810000, "exynos421@-uart.1l", NULL),
{},

i

static vold  init exynos421@ dt machine init(void)
{
of platform populate(NULL, of default bus match table,
exynos4210 auxdata lookup, NULL);

Linaro
1. ]



Callback functions in platform
data of a driver

" Determine if the callback functions can be dropped
from platform data
" Implement callback functions in the driver

= Redesign the driver with no dependency on callbacks

" |ninevitable case, use the 'struct of dev_auxdata’
to pass the callback function pointers
= Populate only the callback function pointers in pdata
= Driver parses other pdata elements from DT

" But, this is just a temporary workaround since auxdata
would be dropped eventually

(L Linaro



Guidelines for designing
bindings

Should be OS agnostic

= Bindings should be reusable across all operating systems (and u-
boot as well)

= If linux specific behavior needs encoding, use the 'linux' prefix for
the binding.

Should be generic information which the driver can
decode and program the hardware or setup the operating
system

Should not be used to hard-code register values
= Acceptable in some cases for one-time writes
Should not be a used to encode read/modify/write cycles
with information on delays.
__!_inaro



Conclusion

" Device tree for ARM helps to
" Reduce bloat in arm-linux

"= Reduce the churn in each kernel release

= Use DT for all new SoC platform and board code
intended to be merged in linux mainline

Linaro






	Linaro: A Year of Change
	So, What is this Linaro Thing?
	Linaro
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	PowerPoint Presentation

