
Thomas Abraham <thomas.abraham@linaro.org>
 Linaro Kernel Working Group

February 15th, 2012

Experiences with device tree
support development for

ARM based SoC's

Why device tree on ARM?

 ARM platforms rely on static list of platform devices for
all non-discoverable devices
 Too many board files

 Device tree is a simple tree like data structure that can
describe a non-discoverable hardware configuration to
the kernel
 Platform devices are created at run-time by the kernel by

parsing the device tree nodes
 Device nodes can carry configuration / platform data for the

devices
 Allows kernel code and platform data to be decoupled

Benefits of Device Tree for ARM
platforms

 Decouples kernel code and SoC data
 Step towards realization of single kernel binary images for ARM based

platforms

 Easier to add support for newer platforms
 Reduces amount of board specific code

 Platform device and platform data are not statically defined
 Usually ends up with one board file per SoC.

 Faster board ports
 For new board support for dt-enabled SoC, write a dts file with

minimal board specific fix-ups

Current Status of Device Tree
Support for ARM Platforms

 Core device tree support for ARM upstreamed by
Grant Likely starting from Linux 3.0
 Platform matching and selection
 Runtime Device creation (platform and AMBA)

 Device tree support completed for PL310 (L2CC),
PL330 (DMAC), PL390 (GIC), PL192 (VIC) ARM
peripherals

 DT support for multiple ARM based SoC's
 SoC specific drivers modified to include DT support

Typical Sequence of adding
device tree support

 Add device tree support to board files
 Start with a new dt-enabled board file
 Enable DT support in existing board files

 Create a SoC specific and board specific device tree
source files (dtsi and dts)

 Enable DT support for system peripherals
 Interrupt Controller, GPIO, DMA

 Enable DT support for peripheral drivers
 UART, I2C, SD/MMC, SPI, etc.

Minimal Device Tree Enabled
board file

Minimal Device Tree Source file

Note: dtsi and dts files are located at arch/arm/boot/dts

Compiling and Testing - 1
 Enable Device Tree Support

 menuconfig → boot options → flattened device tree
 Or use 'select USE_OF' in Kconfig entry of the device tree

enabled board file

 Build the kernel image
 make <defconfig>
 make menuconfig
 make uImage
 Builds the dtc compiler as well

 scripts/dtc

 Build the device tree blob
 make <dts filename>

Compiling and Testing - 2
 Two options for passing dtb blob to kernel

 Use bootm command of u-boot
 Append dtb blob to the kernel image

 Option 1: Using the bootm command
 Build u-boot with CONFIG_OF_LIBFDT enabled
 bootm <kernel base> <initrd base> <dtb base>

 Example: bootm 40007000 - 40004000

 Option 2: Appending dtb blob to kernel
 menuconfig → boot options

 select “Use appended device tree blob”
 Used with legacy u-boot

Compiling and Testing - 3

Instantiating platform devices
from device tree - 1

 Non-DT platforms relied on a static list of platform
devices for all non-discoverable devices

 For DT platforms, infrastructure exists to create
platform devices at runtime from device tree
 of_platform_populate() call walks through the nodes in

device tree and creates platform devices from it
 Call of_platform_populate during machine_init

 Nodes should have a compatible property
 For creating platform devices for sub-nodes, provide a list

of all root nodes (second parameter)

Instantiating platform devices
from device tree - 2

How to add minimal DT support
for Device Drivers - 1

How to add minimal DT support
for Device Drivers - 2

Retrieving driver configuration
data from device node - 1

 Design the device tree node for the device that the
driver will instantiate
 Compatible string
 Register base and memory region length
 IRQ numbers, if any
 Bindings for supplying platform / configuration data to the

driver
 List of gpios if any
 Document the bindings in

Documentation/devicetree/bindings/

Retrieving driver configuration
data from device node - 2

 Modify the driver to obtain the data from the
device node.
 Maintain a local copy of the platform data instead of

referencing pdev->dev.pdata for pdata values
 Add a runtime check to determine if a device node is

available.
 If node is available, parse all properties which the

driver requires and populate the copy of local
platform data

 Avoid parsing device node for properties after probe
 Keep a copy of the property value in private data

Retrieving driver configuration
data from device node - 3

 Non-DT ARM platforms will continue to exist in few more
kernel releases.
 Hence all DT support related additions should maintain compatibility

to non-DT platforms.

 Runtime determination of availability of a device tree node
can be determined by checking of_node pointer

if (pdev->dev->of_node) {
/* DT based instantiation */

} else {
/* Non-DT based instantiation */

}

Retrieving driver configuration
data from device node - 4

Setting up device names and
platform data - 1

 Platform devices instantiated from device tree are not
assigned a device name
 Driver's looking up clocks would need device names

 Device names can be assigned by
 Preparing a 'struct of_dev_auxdata' lookup table
 Passing that table to of_platform_populate()

 Use the same 'struct of_dev_auxdata' lookup table to
supply platform data, if required

 Note: 'struct of_dev_auxdata' lookup table is a
temporary solution

Setting up device names and
platform data - 2

Callback functions in platform
data of a driver

 Determine if the callback functions can be dropped
from platform data
 Implement callback functions in the driver
 Redesign the driver with no dependency on callbacks

 In inevitable case, use the 'struct of_dev_auxdata'
to pass the callback function pointers
 Populate only the callback function pointers in pdata
 Driver parses other pdata elements from DT
 But, this is just a temporary workaround since auxdata

would be dropped eventually

Guidelines for designing
bindings

 Should be OS agnostic
 Bindings should be reusable across all operating systems (and u-

boot as well)
 If linux specific behavior needs encoding, use the 'linux' prefix for

the binding.

 Should be generic information which the driver can
decode and program the hardware or setup the operating
system

 Should not be used to hard-code register values
 Acceptable in some cases for one-time writes

 Should not be a used to encode read/modify/write cycles
with information on delays.

Conclusion

 Device tree for ARM helps to
 Reduce bloat in arm-linux
 Reduce the churn in each kernel release

 Use DT for all new SoC platform and board code
intended to be merged in linux mainline

www.linaro.org

	Linaro: A Year of Change
	So, What is this Linaro Thing?
	Linaro
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	PowerPoint Presentation

