
Controlling Memory
Fragmentation and Higher
Order Allocation Failure:

Analysis, Observations and
Results

Pintu Kumar

pintu.k@samsung.com

 1

mailto:Pintu.k@samsung.com

CONTENT

Introduction

Measuring the memory fragmentation level

Memory Fragmentation Analysis

Observations

Experimentation Results

Summary

Some References

2

INTRODUCTION

• What is Memory Fragmentation ?

When a Linux device has been running continuously
over a time without reboot and keeps allocating and
de-allocating pages, the pages become fragmented. The
bigger contiguous free pages become zero and free
pages are only available in many smaller pages which
are not contiguous. Thus even if we have lots of free
memory in smaller units, the page allocation in kernel
may fail.
This typical problem is called “External Memory
Fragmentation” here after referred to as memory
fragmentation. 3

• Effect of Memory Fragmentation :

Memory Fragmentation can cause a system to
lose its ability to launch new process.

Memory fragmentation becomes more of an
issue in embedded devices and Linux mobiles.

 DRAM + Flash , Swapless system

Memory fragmentation can become more critical
with high multimedia and graphics activities
which requires contiguous higher-order pages.

INTRODUCTION

4

• It is important to measure fragmentation level
across each zones and for each higher-order
allocation in kernel.

• We believe by measuring fragmentation level
during page allocation we can control higher-
order allocation failure in kernel.

• We developed kernel utility to measure
fragmentation level during runtime without
enabling memory COMPACTION.

5

MEASURING FRAGMENTATION LEVEL

• Formula to measure fragmentation level in
percentage :

6

MEASURING FRAGMENTATION LEVEL

TotalFreePages = Total number of free pages in each Node
N = MAX_ORDER - 1  The highest order of allocation
j = the desired order requested
i = page order  0 to N
Ki = Number of free pages in ith order block

(The above formula derived from Mel Gorman’s paper : “Measuring the Impact of the Linux Memory Manager”)

• SAMPLE OUTPUT : cat /proc/fraglevelinfo

7

MEASURING FRAGMENTATION LEVEL

Example:

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 3 20 104 13 13 1 1 1 0 0 0

Lets say a NORMAL zone looks like this at some point of time

Now lets apply our formula to measure fragmentation level for order 2^5.

Here , TotalFreePages = (3x1 + 20x2 + 104x4 + 13x8 + 13x16 + 1x32 + 1x64 + 1x127) = 994

Therefore;
% Fragmentation =
(994 - [(2^5)*1 + (2^6)*1 + (2^7)*1 + (2^8)*0 + (2^9)*0 + (2^10)*0]) * 100) / 994

% Fragmentation = (994 - [32 + 64 + 128]) / 994 = ((994 – 224) * 100) / 994

%Fragmentation = (770 * 100) / 994 = 77.46 %  77 % (round off)

8

• We developed a sample kernel module and test
utility to perform higher-order allocation and
doing memory fragmentation analysis before
and after the allocation.

• Test utility developed and tested for Samsung
Linux Platform (kernel2.6.32 and kernel2.6.36)

• Test Utility can be shared on Linux Test Project
(LTP) after further improvements.

9

MEMORY FRAGMENTATION ANALYSIS

JUST AFTER PHONE BOOT-UP (Samsung Linux Kernel 2.6.36)

10

AFTER RUNNING VARIOUS APPLICATIONS (Browser, WiFi Video Share, Camera,
Voice Recorder, eBooks, Few Games) for ½ an Hour and then killing All)

11

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 3 1 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 197 129 0 0 0 0 0 0 0 0 0

Node 2, zone DMA 30 12 14 4 5 8 6 4 2 1 27

Enter the page order(in power of 2) : 16 2^4 order block 16 x 4K = 64K bytes

Enter the number of such block : 5

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 3 1 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 169 143 1 0 0 0 0 0 0 0 0

Node 2, zone DMA 19 12 12 5 2 7 6 4 2 1 27

/opt/pintu # ls -l /dev/pinchar
crw------- 1 root root 10, 49 Jan 12 13:21 /dev/pinchar

/opt/pintu # ./app_pinchar.bin

Explanation :
5 of 2^4 order blocks were requested. These request could only be satisfied by Node 2,
Thus Node 2 were selected for allocation. But in Node 2 also, out of 5 (2^4) blocks only 3
could be allocated. Then the other 2 were allocated by splitting the 2^5 order blocks.
5 x 2^4 = [3 x 2^4 + (1 x 2^5)] = [3 x 2^4 + (1 x 2 x 2^4)] = [5 x 2^4]

State After The Allocation Request Is Successful

ALLOCATION SUCCESS CASE - (Samsung Kernel 2.6.32)

12

ALLOCATION FAILURE CASE - (Samsung Kernel 2.6.32)

Buddy State Before Allocation

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 1 0 0 0 1 0 2 0 0 0 0

Node 1, zone DMA 247 181 15 1 1 2 0 9 10 8 11

Node 2, zone DMA 19 19 11 3 6 3 4 2 2 2 29

Enter the page order(in power of 2) : 1024 2^10 order block 1024 x 4K = 4096K bytes
Enter the number of such block : 50 (this is the highest order)

ERROR : ioctl - PINCHAR_ALLOC - Failed, after block num = 48 !!!

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 1 0 18 9 0 0 0 0 0 0 0

Node 1, zone DMA 88 77 36 25 25 43 23 19 18 11 20

Node 2, zone DMA 18 14 10 4 5 2 3 3 2 2 29

Buddy State After Allocation FAILED And Other Allocation Freed

Explanation : The interesting think to note here is that after requested allocation was failed,
kernel tried to arrange that many blocks in desired order so that next similar request can be
succeeded.

Explanation : As you can see the allocation request of 1024 x 50 pages is failed after 47 such
allocation. But still there were enough free pages available in lower order.

13

• __alloc_pages_nodemask : This is the heart of
all allocation in kernel.

• We measure fragmentation level for each
higher order here.

• Track higher-order allocation during high
fragmentation. Anything above
PAGE_ALLOC_COSTLY_ORDER(==3) is
considered higher-order allocation and
becomes critical.

14

Observations

• Direct reclaim does some progress but still could not
return any pages during first run.

• Similarly direct compact (from kernel2.6.36 onwards)
is helpful but still not effective for very higher-order
allocation.

• May be the other way round (first direct_reclaim then
direct_compact) could be more helpful.

• A small amount of delay(for GFP_KERNEL) is required
after direct_{reclaim,compact} and before retry.
Maybe due to lazy buddy allocator.

15

Observations

Experiments Results

• We performed some experiments with higher-order
allocation and got some results.

• We found that whenever we run any application
“Xorg” perform 4 or 8 order allocation.

• The browser always requires order-4 allocation.

/opt/pintu # ps ax | grep browser
 7159 ? Ssl 0:03 /opt/apps/com.samsung.browser/bin/browser

[3830.215613] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.227243] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 8, Fragmentation Level = 29%
[3830.235645] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.244575] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
(Around 10 times)

[3831.355884] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.364649] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
[3831.373484] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.383134] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
(Around 26 times)

16

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 685 104 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 33 19 31 18 9 1 1 0 0 0 0

Node 2, zone DMA 11 50 9 5 5 3 2 1 0 0 0

Enter the page order(in power of 2) : 1024 2^10 order block 1024 x 4K = 4096K bytes
Enter the number of such block : 10 (this is the highest order)

[24768.550017] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.559578] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 0, ORDER = 10, Fragmentation Level = 100%
[24768.568020] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.578686] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 1, ORDER = 10, Fragmentation Level = 100%
[24768.587251] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.597919] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 2, ORDER = 10, Fragmentation Level = 100%
[24768.606486] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[24768.615141] app_pinchar.bin: page allocation failure. order:10, mode:0x4020

 ---------------- Wait for 2 seconds and retry allocation ---------- 
[24770.669441] [HIGHERORDER_DEBUG] : Trying - Final time !!!!!!!!!!!
[24770.686688] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0) !

Explanation : As you can see here, due to 100% fragmentation, page allocation request was
failing, even after direct reclaim (slow path). But after a delay and retrying allocation
request again, all subsequent allocation were successful.
This delay indicates something needs to be done after direct reclaim. Maybe wait till lazy
buddy allocator arranges free pages in the subsequent free areas.

RESULT #1 - (Samsung Kernel 2.6.32)

17

RESULT #2 - (Samsung Kernel 2.6.36) [Without COMPACTION]

Initial Fragmentation Level

18

19

After Higher order allocation request

./app_pinchar.bin 1024 25

[17949.789934] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17949.801633] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 92%
[17949.811073] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[17949.831793] [HIGHERORDER_DEBUG] : did_some_progress = 151
[17949.844090] [HIGHERORDER_DEBUG] : NO pages........even after direct reclaim

[17949.859104] app_pinchar.bin: page allocation failure. order:10, mode:0x40d0
------------------------------------- Wait for 2 seconds and retry allocation ---------------------
[17951.879156] [HIGHERORDER_DEBUG] : Trying - Final time !!!!!!!!!!!
[17951.893248] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0)

[17960.189583] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17960.201128] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 98%
[17960.210269] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[17960.335044] [HIGHERORDER_DEBUG] : did_some_progress = 887
[17960.339918] [HIGHERORDER_DEBUG] : Got some pages after direct reclaim
[17960.368939] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 4) !

[17964.518845] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17964.530629] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 83%
[17964.547138] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 8) !
[17965.552976] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17965.564319] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 84%
[17965.580823] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 9) !
[17966.586440] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17966.597175] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 85%
[17966.613424] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 10) !

Allocation failed directly during the first attempt itself even after direct reclaim. But after
introducing a delay and retrying, all further allocation succeeded. May be Kswapd takes
sometime to clear up dirty pages and buddy adding it back to free area.

20

Final Fragmentation Level

Here you can see lots of movable pages after lots of direct reclaim. Thus direct compact
might be helpful after direct reclaim and not before.

21

EXPERIMENTATION DATA

Page
Order

Block
Used

Available
Blocks

No of Blocks
Requested

Current
Fragmentation Level

No of Blocks
Allocated

Pass
Rate

10 1024 0 20 100% 20 100%

9 512 11 20 94% 20 100%

8 256 4 20 90% 20 100%

8 256 0 50 100% 50 100%

9 512 1 30 97% 30 100%

10 1024 28 40 10% 40 100%

10 1024 0 50 100% 46 92%

DATA COLLECTED ON :
Samsung Mobile Target With Kernel 2.6.32

22

• Measuring fragmentation level and tracking higher-
order is important at least for low memory notifier.

• It was observed that allocation takes slowpath
whenever fragmentation level is above 90%.

• The delay introduced here is only for experimental
purpose.

 Delay could be because, dirty pages has to be written to the
disk before it is marked freed.

 May be the real thing could be to wait till lazy buddy
allocator rearranges the free pages.

 This is valid only for GFP_KERNEL where a sleep is allowed.

SUMMARY

23

• For fragmentation > 90%, introduce temporary kernel
thread to do direct reclaim/compact in background.

 Buy the time you come back for next request, pages will be
ready for you.

 Not enough data to share. Further experiments in progress.

• From kernel2.6.35 COMPACTION contains its own
fragmentation level measurement.
 /sys/kernel/debug/extfrag/unusable_index

 But this requires COMPACTION and HUGETLB to be enabled.

 May be we can utilize this from kernel2.6.35 onwards.

 Difficult to back port compaction to lower kernel version.

 Mostly helpful for large system and may not be useful for
small embedded products.

24

• Can we introduce something like system wide
fragmentation level ???

• Reboot is not a good choice for end users even for
small system.

• May be introduce something like “Reset Physical
memory state”.

 Bring back memory to original state without reboot.

 Not enough data.

 May be develop system utility to shrink physical memory
using “shrink_all_memory” used during snapshot image
creation in Hibernation.

25

• Reserving memory during boot time can reduce
fragmentation to some extent.
 Good only if you have bigger RAM.

 Tracking higher-order fragmentation level can help decide which
memory to reserve in future.

 May be something like dynamic reserving based on past performance
could be better.

• Contiguous Memory Allocator (CMA) and Virtual
Contiguous Memory (VCM) can help fight
fragmentation.
 CMA : same like reserving memory during boot but transparently allows

the memory to be reused and latter migrate pages to create similar
chunk.

 Can be used for frame buffers and other memory hungry multimedia
devices.

26

• But CMA requires pages to be movable and may now
use compaction, again not guaranteed because most
kernel pages are not movable.

 May be we have to limit the reuse of CMA region.

 Or share CMA region only for very high order.

• Problem easily reproducible in DRAM + Flash swapless
embedded system without HighMem.

• Further combination of investigation is in progress to
derive a solution which does not requires reboot.

27

Some References

1. Wikipedia, “Buddy Memory Allocation”. http://en.wikipedia.org/wiki/Buddy_memory_allocation.

2. Jonathan Corbet. (2010), “Memory Compaction” http://lwn.net/Articles/368869/

3. Lifting The Earth (2011) “Linux Page Allocation Failure”, http://www.linuxsmiths.com/blog/.

4. Mark S. Johnstone and Paul R. Wilson (1997), “The Memory Fragmentation Problem – Solved?”

5. Mel Gorman and Patrick Healy (2005) “Measuring the Impact of the Linux Memory Manager”
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf

6. Corbet (2004), “Kswapd and higher-order allocations” http://lwn.net/Articles/101230/

http://en.wikipedia.org/wiki/Buddy_memory_allocation
http://lwn.net/Articles/368869/
http://www.linuxsmiths.com/blog/
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://lwn.net/Articles/101230/

28

