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Who am I?

Based in Central Kentucky, USA

Senior Firmware Developer at Lexmark International

bitbake user since 2014

rust user and advocate since pre-1.0
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Rust & Go Similarities

*  Modern, high-level languages
* Strongly-typed and memory safe

* Compiled to machine code
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Rust vs. Go

- Go: garbage collected (Rust isn't)

* Not ideal for embedded / bare-metal code

*  Go: has null pointers (Rust doesn't)

* Rust references must point at a valid object

* Rust has algebraic data types
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Algebraic Data Types

* Naively implemented data type

enum Fruit {
Apple,
Banana,
Strawberry,

};

struct FruitDescription {
enum Frult type;
int apple_diameter; // only valid when type ==
int banana_weight; // only valid when type ==

};

Apple
Banana
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Algebraic Data Types

* Space-optimized

struct FruitDescription {
enum Fruit type;

union {
int apple_diameter; // only valid when type == Apple
int banana_weight; // only valid when type == Banana
s

};
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Rust enum

* Similar to the tagged-union pattern
- Each enum variant can have associated data

* Pattern matching for deconstruction
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Rust enum

*  Equivalent Rust code

enum Fruit {
Apple(u32 /* diameter */),
Banana(u32 /* weight */),
Strawberry,

fn describe_fruit(f: Fruit) {
match f {
Fruit: :Apple(diameter) => println!("Apple with diameter {}", diameter),
Fruit::Banana(weight) => println!("Banana weighing {}", weight),
Fruit::Strawberry => println!("Regular old strawberry"),
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Rust enum

- Simple use of pattern matching

enum Result {

ok(String),
Err(u32)

}

[...]

let result = fn_that_can_fail();
match result {
Ok(x) => println!("The successful result was {}", x),
Err(e) => println!("The operation failed, error code: {}", e)
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No Undefined Behavior in Rust

*  No type confusion

*  No memory errors
* Buffer overflow
* Use-after-free

* No data races
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Rust is strongly typed

Unsafe type conversions forbidden

fn add(x: &i32) -> i32 {
*X + 5
}

fn main () {
let s = "Hello";
let y: &132 = s as &i32;
add(&y);
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Rust is strongly typed

Unsafe type conversions forbidden

error[EG605]: non-primitive cast: &str as &i32°
--> src/main.rs:7:19
I
7 | let y: &132 = s as &132;
| ANNNNNNNN gqn “as”™ expression can only
be used to convert between primitive types or to coerce to
a specific trait object
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No buffer overflow

Array lengths are run-time checked

fn get_second(x: &[i32]) -> 132 {
x[1]
}

fn main () {
let array = [1];
get_second(&array);
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No buffer overflow

Array lengths are run-time checked

thread 'main' panicked at 'index out of bounds: the len 1is
1 but the index is 1', src/main.rs:2:5
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No use-after-free

fn main () {
let five = 5;
let mut ptr = &five;
{
let six = 6;
ptr = &six;
}
println! ("{}", *ptr);
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No use-after-free

- Amazingly good error messages

error[E0597]:

"six” does not live long enough

--> src/main.rs:6:15

|
6

N

}

8

ptr = &six;

ANNN horrowed value does not live long enough

I
|
I
| - "six dropped here while still borrowed
| println! ("{}", *ptr);

I

---- borrow later used here
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No iterator invalidation

fn main () {
let mut array = vec![1,2,3,4];
for 1 in array.iter_mut() {
*1 +=1 ;
if *i == 5 {
array.remove(5);
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No iterator invalidation

error[E0499]: cannot borrow "array as mutable more than once at a time
--> src/main.rs:7:13

4

7|
I

for 1 in array.iter_mut() {

first mutable borrow occurs here
first borrow later used here

array.remove(5);
AN\ second mutable borrow occurs here
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No data races

Locks are containers

use std::sync::Mutex;

fn main () {
let x = "No races!".to_string();
let lock = Mutex::new(Xx);
println! ("{}", x);
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No data races

Locks are containers

error[E0382]: borrow of moved value: “x°
--> src/main.rs:6:20

I
4 | let x = "No races!".to_string();

| - move occurs because x  has type "String’,
which does not implement the "Copy trait
5 | let lock = Mutex::new(Xx);

| - value moved here
6 | println! ("{}", x);

| N value borrowed here after move
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No data races

Contents only accessible via lock guard

use std::sync::Mutex;

fn main () {
let x = "No races!".to_string();
let mutex = Mutex::new(X);
let guard = mutex.lock().unwrap();
println! ("{}", *gquard);
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Safe vs. Unsafe rust

* Rust is “safe” by default
* Not everything can be proven by the compiler

* Potentially unsafe code goes in “unsafe” blocks
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Why use rust?

* High performance

* Low overhead

* Safer than C/C++

* Rich tool ecosystem

* cargo, crates.io, rustfmt, clippy
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Why not use rust?

Language is still rapidly developing

* (But excellent backwards compatibility)

Code size (relative to C/C++)

Faster iteration with e.g. Python

Not ideal for all domains
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meta-rust

* Provides rust compiler and tooling
* Makes cargo and bitbake play nicely
* Used by meta-iotedge

*  Working on integration with meta-oe
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cargo-bitbake

* Primarily for generating executables

* Cargo builds all dependencies every time, statically
linked

 Standard library can be a shared object
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Thanks!

* meta-rust maintainers:
* Cody Schafer
* Doug Goldstein
* Tyler Hall
* Paul Osborne

* Derek Straka

*  Thanks to all who have contributed!
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