yocto | Qi

PROJECT FOUNDATION

Using rust with bitbake and meta-rust

Yocto Project Summit, May 2021



Who am I?

Based in Central Kentucky, USA

Senior Firmware Developer at Lexmark International

bitbake user since 2014

rust user and advocate since pre-1.0

Yocto Project® | The Linux Foundation®



Yocto Project | The Linux Foundation



Rust & Go Similarities

*  Modern, high-level languages
* Strongly-typed and memory safe

* Compiled to machine code

Yocto Project® | The Linux Foundation®



Rust vs. Go

- Go: garbage collected (Rust isn't)

* Not ideal for embedded / bare-metal code

*  Go: has null pointers (Rust doesn't)

* Rust references must point at a valid object

* Rust has algebraic data types

Yocto Project® | The Linux Foundation®




Algebraic Data Types

* Naively implemented data type

enum Fruit {
Apple,
Banana,
Strawberry,

};

struct FruitDescription {
enum Frult type;
int apple_diameter; // only valid when type ==
int banana_weight; // only valid when type ==

};

Apple
Banana

Yocto Project® | The Linux Foundation®




Algebraic Data Types

* Space-optimized

struct FruitDescription {
enum Fruit type;

union {
int apple_diameter; // only valid when type == Apple
int banana_weight; // only valid when type == Banana
s

};

Yocto Project® | The Linux Foundation®



Rust enum

* Similar to the tagged-union pattern
- Each enum variant can have associated data

* Pattern matching for deconstruction

Yocto Project® | The Linux Foundation®



Rust enum

*  Equivalent Rust code

enum Fruit {
Apple(u32 /* diameter */),
Banana(u32 /* weight */),
Strawberry,

fn describe_fruit(f: Fruit) {
match f {
Fruit: :Apple(diameter) => println!("Apple with diameter {}", diameter),
Fruit::Banana(weight) => println!("Banana weighing {}", weight),
Fruit::Strawberry => println!("Regular old strawberry"),

Yocto Project® | The Linux Foundation®




Rust enum

- Simple use of pattern matching

enum Result {

ok(String),
Err(u32)

}

[...]

let result = fn_that_can_fail();
match result {
Ok(x) => println!("The successful result was {}", x),
Err(e) => println!("The operation failed, error code: {}", e)

Yocto Project® | The Linux Foundation®




No Undefined Behavior in Rust

*  No type confusion

*  No memory errors
* Buffer overflow
* Use-after-free

* No data races

Yocto Project® | The Linux Foundation®




Rust is strongly typed

Unsafe type conversions forbidden

fn add(x: &i32) -> i32 {
*X + 5
}

fn main () {
let s = "Hello";
let y: &132 = s as &i32;
add(&y);

Yocto Project® | The Linux Foundation®




Rust is strongly typed

Unsafe type conversions forbidden

error[EG605]: non-primitive cast: &str as &i32°
--> src/main.rs:7:19
I
7 | let y: &132 = s as &132;
| ANNNNNNNN gqn “as”™ expression can only
be used to convert between primitive types or to coerce to
a specific trait object

Yocto Project® | The Linux Foundation®




No buffer overflow

Array lengths are run-time checked

fn get_second(x: &[i32]) -> 132 {
x[1]
}

fn main () {
let array = [1];
get_second(&array);

Yocto Project® | The Linux Foundation®



No buffer overflow

Array lengths are run-time checked

thread 'main' panicked at 'index out of bounds: the len 1is
1 but the index is 1', src/main.rs:2:5

Yocto Project® | The Linux Foundation®



No use-after-free

fn main () {
let five = 5;
let mut ptr = &five;
{
let six = 6;
ptr = &six;
}
println! ("{}", *ptr);

Yocto Project® | The Linux Foundation®




No use-after-free

- Amazingly good error messages

error[E0597]:

"six” does not live long enough

--> src/main.rs:6:15

|
6

N

}

8

ptr = &six;

ANNN horrowed value does not live long enough

I
|
I
| - "six dropped here while still borrowed
| println! ("{}", *ptr);

I

---- borrow later used here

Yocto Project® | The Linux Foundation®




No iterator invalidation

fn main () {
let mut array = vec![1,2,3,4];
for 1 in array.iter_mut() {
*1 +=1 ;
if *i == 5 {
array.remove(5);

Yocto Project® | The Linux Foundation®




No iterator invalidation

error[E0499]: cannot borrow "array as mutable more than once at a time
--> src/main.rs:7:13

4

7|
I

for 1 in array.iter_mut() {

first mutable borrow occurs here
first borrow later used here

array.remove(5);
AN\ second mutable borrow occurs here

Yocto Project® | The Linux Foundation®




No data races

Locks are containers

use std::sync::Mutex;

fn main () {
let x = "No races!".to_string();
let lock = Mutex::new(Xx);
println! ("{}", x);

Yocto Project® | The Linux Foundation®



No data races

Locks are containers

error[E0382]: borrow of moved value: “x°
--> src/main.rs:6:20

I
4 | let x = "No races!".to_string();

| - move occurs because x  has type "String’,
which does not implement the "Copy trait
5 | let lock = Mutex::new(Xx);

| - value moved here
6 | println! ("{}", x);

| N value borrowed here after move

Yocto Project® | The Linux Foundation®




No data races

Contents only accessible via lock guard

use std::sync::Mutex;

fn main () {
let x = "No races!".to_string();
let mutex = Mutex::new(X);
let guard = mutex.lock().unwrap();
println! ("{}", *gquard);

Yocto Project® | The Linux Foundation®



Safe vs. Unsafe rust

* Rust is “safe” by default
* Not everything can be proven by the compiler

* Potentially unsafe code goes in “unsafe” blocks

Yocto Project® | The Linux Foundation®



Why use rust?

* High performance

* Low overhead

* Safer than C/C++

* Rich tool ecosystem

* cargo, crates.io, rustfmt, clippy

Yocto Project® | The Linux Foundation®



Yocto Project | The Linux Foundation



Why not use rust?

Language is still rapidly developing

* (But excellent backwards compatibility)

Code size (relative to C/C++)

Faster iteration with e.g. Python

Not ideal for all domains

Yocto Project® | The Linux Foundation®



Yocto Project | The Linux Foundation



meta-rust

* Provides rust compiler and tooling
* Makes cargo and bitbake play nicely
* Used by meta-iotedge

*  Working on integration with meta-oe

Yocto Project® | The Linux Foundation®



Yocto Project | The Linux Foundation



cargo-bitbake

* Primarily for generating executables

* Cargo builds all dependencies every time, statically
linked

 Standard library can be a shared object

Yocto Project® | The Linux Foundation®



Thanks!

* meta-rust maintainers:
* Cody Schafer
* Doug Goldstein
* Tyler Hall
* Paul Osborne

* Derek Straka

*  Thanks to all who have contributed!

Yocto Project® | The Linux Foundation®



yocto



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

