
How to decide Linux Kernel for
Embedded Products

Tsugikazu SHIBATA

NEC

20, Feb. 2013

Embedded Linux Conference 2013

Parc55 @ SAN FRANCISCO

Agenda

• Points to be considered to decide Linux kernel
version

• Key activities of LTSI

Points to be considered to decide the kernel
version

 Technical aspects

 Stability

Maintenance

 Cost

 …

Technical aspects

 Performance

Memory

 Battery life

 Real time nests

 Connect ability

 …

Technical aspects

 Performance

Memory

 Battery life

 Real time nests

 Connect ability

 …

Technical aspects are heavily depends on kernel

development in the community.

We should look at the community otherwise we

cannot choose right version of the kernel

Linux kernel: release date, # of files and lines

Version Release
date

of
Files

of Lines

3.8 2013-2-19 41,520 16,416,967 (+1.4%)

3.7 2012-12-11 40,905 16,191,784 (+1.4%)

3.6 2012-10-1 39,733 15,868,122 (+1.7%)

3.5 2012-7-21 39,096 15,596,464 (+1.4%)

3.4 2012-5-22 38,566 15,383,946 (+1.4%)

3.3 2012-3-19 38,082 15,166,160 (+1.1%)

3.2 2012-1-5 37,617 14,998,737 (+1.5%)

3.1 2011-10-28 37,085 14,770,555

500 Files added,

200,000 Lines of code added

 for a version

Released

60-70 days

Linux kernel: Date for release

0

20

40

60

80

100

120

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Stability

 Older kernel is not always stable

 Latest kernel is not always stable

– Community development is always “Release early,
Release often”

– Many developers are reviewing and changing the
code

– Solving the problem and developing features are
always for the latest version of mainline

Stability

 Older kernel is not always stable

 Latest kernel is not always stable

– Community development is always “Release early,
Release often”

– Many developers are reviewing and changing the
code

– Solving the problem and developing features are
always for the latest version of mainline

For the products, we need to back port latest feature to the

production kernel

We need to watch the development community to

understand what is happening

Maintenance – bug and security fixes

 Number of bugs will be found after the kernel
release

 Number of security problem will also be
found after the kernel release

 All such problems are fixed in the latest
kernel version

Maintenance – bug and security fixes

 Number of bugs will be found after the kernel
release

 Number of security problem will also be
found after the kernel release

 All such problems are fixed in the latest
kernel version

We should watch the community and every bugs and

security fixes should be back port to the production kernel.

If you will lost the back port, your product includes security

hole and bugs. That will be a company’s risk

Maintenance – in-house patch

 Everyone have own changes as in-house code

– Sometime fixes the bugs and add nice features

– But most of such changes are stay in-house

 Kernel development is moving very fast and
changing its code

 So, in case of new product development, in-
house code may not be able to apply to the
newer target kernel

Maintenance - in-house patch

• In-house patch porting process

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Maintenance - in-house patch

• In-house patch porting process

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Reason may depends on for

both in-house patch and

kernel itself

Maintenance - in-house patch

• In-house patch porting process

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Reason may depends on for

both in-house patch and

kernel itself

Engineer who wrote the

patch may not in the team

Maintenance - in-house patch

• In-house patch porting process

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Reason may depends on for

both in-house patch and

kernel itself

Engineer who wrote the

patch is not in the team

Need review the patch as

the correctness

Maintenance - in-house patch

• In-house patch porting process

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Reason may depends on for

both in-house patch and

kernel itself

Engineer who wrote the

patch is not in the team

Need review the patch as

the correctness Need to create testing

environment again

Maintenance - in-house patch

• In-house patch porting process

Reason may depends on for

both in-house patch and

kernel itself

Engineer who wrote the

patch is not in the team

Need review the patch as

the correctness Need to create testing

environment again

While every single in-hose patches

 if a patch cannot apply to the target kernel

 Investigate the reason

 rewrite the patch for target kernel

 test the patch on the target kernel

Patch porting works continue for # of

patches

These patch porting work continue for future products

whenever in-house code exists

Cost

 Development cost

Maintenance cost

 HW/Product cost

 Sales/Marketing cost

 …

Cost

 Development cost

– Specific application or middle ware

– Tuning for overall system

– Specific driver for kernel

– Patch porting to newer kernel

Maintenance cost

– Back porting bugs and security fixes

– Fixes for own application and middle ware

 HW/Product cost

 Sales/Marketing cost

Summary

• Product development is deeply depending on
how engineers are participating the to the
community

– Watch the development status

– How the bugs and security problems are fixed

– In-house code need to be merged into upstream

– Decrease the development cost

– Share information among the engineers will also
decrease the development cost

LTSI: Key activities

• Provide a industry managed kernel and
maintain Long term stably

• Provide a common place for embedded
industry

• Provide place to support upstream
activity

LTSI: Industry managed kernel

• LTSI defines common kernel every year and
maintains for 2 years

• LTSI adopts community Long term kernel as a
base. Therefore, bug/security fixes from
upstream are automatically applied to LTSI.

• LTSI kernel = long term + additional patches

• After 2 years term finished, possible to take
over maintenance for longer term

Community’s long term kernels and
Its consumers

• 2.6.27: SUSE11

• 2.6.32: SUSE11 SP1/RHEL 6/Ubuntu10.04 LTS

• 2.6.34: Wind River Linux

• 2.6.35: Embedded usage, Android (Ginger Bread)

• 3.0: LTSI, Android (Ice Cream Sandwich), SUSE11 SP2

• 3.2: Debian7, Bunt 12.04 LTS

• 3.4: LTSI, Android (Jelly bean)

LTSI: Common place

• LTSI provides the place to share information and
experience among industry

– Mailing list to share problem and discuss how to
solve

– Open Workshop to share status among the industry

– Closed meeting :ICM (Industry Contact Meeting) for
more deeper F2F discussion

• Share the information will reduce the
development cost

Open Workshop

• February 21, 2013 3:00pm - 5:00pm

 at Hearst Room, 4th Floor, Park 55 Hotel

• The workshop will cover :

– Brief Updates of LTSI

– Updates from a partner project: Doctor

– Discussion on after release patch acceptance policy

– Discussion on Super Long Term Support (over 2
years support)

– Discussion on the next LTSI release

LTSI: Support upstream activity

• Developer in the embedded industry need to know
how to work with community

• LTSI provides help upstream activities

– Provide suggestion how their patches can be merged
into upstream

– Review and discussion for proposed patches to be
merged

– Many of discussion under way

• Merging patches to upstream is also reduce the
cost of each companies

LTSI Use Case Program

• LTSI would like to expand use case
• We would ask you to port LTSI to your preferred

OS?
– Android, CyanogenMOD, FirefoxOS
– Gentoo, OpenWRT, XBMC,GeeXBoX
– Debian, Ubuntu, Fedora, OpenSUSE for ARM

• We will help your activities with providing Board・
HW and that will be used by your self after the
porting finished

• You need to write your poring report to eLinux
Wiki

• You need to send patch to LTSI mailing list if you
have changed

• Details can be discussed at LTSI Booth 6pm today

How you can participate LTSI

• Follow on Twitter account:

@LinuxLTSI

• Web:

http://ltsi.linuxfoundation.org

• Mailing list:

https://lists.linuxfoundation.org/mailman/listinfo/ltsi-dev

• Git tree :
 http://git.linuxfoundation.org/?p=ltsi-

ernel.git;a=summary

29

30

THANK YOU

