
11

ARM11 MPCore
and its impact on

Linux Power Consumption

John Goodacre
Program Manager - Multiprocessing

ARM Ltd

222

Why did ARM build the MPCore ?
Embedded designers are always looking in the next generation more performance
and/or lower power

ARM brought the Cortex-A8 uniprocessor answers this for non-MP software through higher
MHz and low-power design methodologies
ARM brought the ARM11 MPCore multiprocessor to answer this for MP aware software
through duplicating processors and lower MHz by sharing CPUs

Its now clear that there is an industry-wide adoption of multicore for reasons of
providing higher performance and lower power

ARM designed MPCore as a multicore processor that wasn’t simply multiple uniprocessors
sharing a bus

The longer-term future is very multicore / multiprocessor

333

MPCore: What’s it look like?
RTL synthesis configurations to define scalability between 1 and 4 CPUs

With the design addressing the key scalability and bottlenecks of traditional MP design
Interrupt distributor for high throughput and low latency inter-processor communications
Snoop control unit for high performance and power efficient cache coherency

Snoop Control Unit (SCU)
I & D

64bit bus
Coherence

Control
bus

Primary
AMBA 3 AXI
Read/Write
64-bit bus

Optional 2nd
AMBA 3 AXI

Read/Write (load
sharing)

Interrupt Distributor

Configurable number of
 hardware interrupt lines

Private
Peripheral Bus

Timer

Wdog
CPU

interface

IRQ

Timer

Wdog
CPU

interface

IRQ

IRQ

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

Timer

Wdog
CPU

interface

Timer

Wdog
CPU

interface

Per CPU private fast
interrupts (FIQ/NMI)

Performance, scalability
and flexibility

Looks like a uniprocessor with
simplified integration and

validation for SoC designer

H/W enhanced interrupt
and inter-processor

communication

Cache coherence
for flexible and

efficient software

Configurable
Between 1 and 4

CPUs

Private peripheral to
provide initial OS boot
and software portability

444

Enterprise capable memory system
Merging Store Buffer with forwarding for improved bus utilization

Saving up to 70% of the CPU cycles wasted due to memory latency
Physically indexed, physically tagged data cache using ‘cork-screw’ memory and buffers

Allowing single cycle allocation/eviction of cache lines
Reducing the software cost from flushing and de-aliasing of data cache

Scalable to multiple processor designs
With full data cache coherence and cache-2-cache transfer capabilities

Allocates cache line on both read-miss and read-write
Reducing the bus write load by up to 50%
Automatic adjustment to back-off from write-allocate when necessary

TLB

Arbiter

Dirty
RAM

Tag
RAM

Coherency
control

EWB DDI

slot 0

Slots

slot 1 slot 2

Store Buffer

Data Side BIU

Coherent
Data

Interface

Integer
Core

Integer
Core

Coherent
Control

Interface

Data
RAM

LFB

555

Effect of MPCore’s enhanced L1

Memory throughput
improvement due to
MPCore’s new L1 memory
system

Providing better memory
bursting
Providing higher
performance from higher
latency memory
Reducing power
consumption by less
memory activity by around
14%

memset() of 128KB

1-1-1-1 10-1-1-1 20-1-1-1

CP
U

Cy
cle

s
(1

00
0’

s)

“jpeg compression” benchmark

1-1-1-1 10-1-1-1 20-1-1-1

CP
U

Cy
cle

s
(m

illi
on

s)

57%
Improvement

46%
Improvement

Without enhancement

With enhancements

666

Dynamic and leakage power
Dynamic energy is consumed when clocking logic and is related to the logic
complexity to accomplish a given task

Long core pipelines with advanced logic functions take more energy to compute a comparable
simple operation on a simple RISC core

There is a non-linear relationship between the amount of logic required to achieve a high-
frequency, high throughput design

Leakage power is consumed whenever logic or RAM has power applied
Getting worse as fabrication geometries reduce below 130nm

Leakage worsen when you attempt high MHz in a given process

 Broadly speaking, total leakage goes up as die area goes up

777

The cost of more performance
Po

we
r C

on
su

m
pt

io
n

Also higher frequency cores
use more power
as voltage factor is squared
Power = k * MHz * vt * vt

1320 DMIPS
MIPS 20Kc is 20mm2 (32/32K cache)
MPCore is 12mm2 (16/16k x 2)

2600 DMIPS
PIII-M is 80mm2 (32/32k + 256)
MPCore is 36mm2 (32/32k x 4)

Comparisons from public information. All processors using 130nm process

>60%
Smaller

MIPS 20Kc

Pentium III Mobile

Less than
Half the size

Performance

MPCore 2-way

MPCore 4-way

MPCore

http://images.google.co.uk/imgres?imgurl=www.ame.ch/elektrglf/cpu.gif&imgrefurl=http://www.ame.ch/elektrglf/serpar.htm&h=436&w=409&sz=189&tbnid=8kfIS9CP3awJ:&tbnh=122&tbnw=115&prev=/images%3Fq%3DCPU%2BDie%26start%3D60%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://images.google.co.uk/imgres?imgurl=www.ame.ch/elektrglf/cpu.gif&imgrefurl=http://www.ame.ch/elektrglf/serpar.htm&h=436&w=409&sz=189&tbnid=8kfIS9CP3awJ:&tbnh=122&tbnw=115&prev=/images%3Fq%3DCPU%2BDie%26start%3D60%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN

888

Multicore Processing
Higher performance per mm2 than a uniprocessor design using the same implementation process

Offering higher performance at lower cost

Lower mW per “DMIP” than a uniprocessor implemented in the same technology of equivalent
performance

Offering longer battery life / lower cooling without sacrificing performance

Supporting partial shutdown of process to further extend the power controls of a typical uniprocessor with
standby, voltage and frequency scaling techniques

Same die size as a multithreaded processor of the same performance
Removing any reason to using a high design risk multithreaded uniprocessor

With the advantage of predictable performance and design scalability

…and without the need to continue to push the MHz for higher performance

999

Adaptive Shutdown to Standby
Maintains coherence while in standby

Allowing immediate entry without any preceding cache house keeping

Allowing for 2 cycle exit, and back into active service

Does not materially effect the latency of the system

Dynamic energy is saved for entire CPU whenever
no task is schedulable on CPU

Consequence is a direct relationship
between consumed dynamic energy
and computation accomplished

ARM ISA offers WFI (wait for interrupt)
instruction to hint to enter standby

See ./arch/arm/kernel/process.c

101010

Measured Low Power Consumption
Using the MPCore’s built-in Adaptive-Shutdown to Standby

Offering a 50% reduction in average power consumption

For further power savings, MPCore supports Adaptive Shutdown to both Dormant and Reset,
and Dynamic Voltage and Frequency Scaling (IEM), to lower the power consumption by
over 85%

In reset
(leakage)

All CPU in WFI

Testchip SoC active
No caches enabled

All CPUs in Standby (WFI) during OS idle()
Running Linux GUI
and background tasks.

~ 310mW

~ 140mW

Playing
Doom

~ 400mW
Watching
MPEG2
(480x272)

~ 920mW All CPUs executing
game physics with
floating point

Increasingly demanding performance workloads

Testchip overhead

No power management implemented within
testchip

OS & cache overhead

No optimization done
within Linux port

MPCore power
consumed to
execute real application
workloads

Readings taken of 1.2v supply to whole testchip
running at 264MHz and the off-chip AXI bus at

22MHz

(Includes CPUs L1 & L2 caches plus associated
SoC logic)

111111

Adaptive Shutdown to Reset (/Dormant)
Power save scheme to remove voltage applied to core logic and RAM, and
thereby save all associated dynamic and leakage current

Leakage becoming significant part (30-50%) of consumed energy

MPCore allows individual CPU within the SMP cluster to isolate themselves from
the coherence domain

Also used by designs requiring processor isolation to run AMP software

Requires all dirty cache data to be evicted before coherence isolation

MPCore defines external signalling to tell SoC to also remove power when software next enters
standby

Wake up is via another CPU telling the SoC, and the awoken CPU reloading any processor
state and rejoining the coherence domain

121212

HOTPLUG Integration
See from Kernel v2.6.15 ./arch/arm/mach-realview/hotplug.c

Device /sys/devices/system/cpu/cpu[0-3]/online
Write “0” to unplug the CPU from the SMP cluster and power it down
Write “1” to bring the CPU back on line
Read to find current state
Illegal to unplug CPU0

Unplugging CPU isolated it from been available to scheduler

Precise implication is architecture dependent, for ARM
Ensure no hardware interrupt set to be distributed to CPU
Removes the CPU from the coherence domain
Interacts with the SoC power controller to request power isolation from both CPU logic and
RAMs associated with the CPU

131313

Summary of Per CPU Power Control

Via external wake up event from power
controller

Power offPower offPowered Off

Via external wake-up event from power
controller

Retention state
voltage only

Power offDormant

Wake up on interrupts (external I/O or
Timer / WatchDog)

L1 memory system only wakes up
temporally to process SCU coherency
requests

PoweredPowered up

Only wake-up logic clocked
WFI
(also WFE)

N/APowered Powered up

Everything clocked
Running

Wake-up MechanismRAM ArraysCPU Logic

141414

Intelligent Energy Management
Assuming the MPCore implementation included options to

Dynamically adjust the (whole multiprocessor’s) voltage and frequency
Each CPU was isolated so that it could be individually powered down

SoC power controller was integrated in the specified manner to implement required power
control requests

Then the expected MPCore power scheme would be
If concurrency exists, then run maximum number of CPUs at the lowest MHz and voltage
appropriate to accomplish the given work load

Map processes to CPU in a manner than best balances utilization
If concurrency temporally is less than number of CPU, move to standby
If concurrency drops for ‘significant’ period, then move CPUs into reset
If only one CPU is currently powered

Go into standby as necessary,
If no work for longer periods, move CPU into dormant

151515

MPCore extends beyond simply DVFS

Powered
Down

Required performance

En
er

gy
 c

on
su

m
ed

Shutdown Maximum
Performance

Fully
Powered

All processors active: IEM scales
voltage/frequency for required performance

Reduced concurrency or lower performance
required: shut down processors

Energy saving from
predictive and
dynamic voltage
and frequency
scaling

Energy saving from CPU
shutdown

Dormant mode for low
power standby

4 CPU operation
with IEM extending
to peak
performance

3 CPU operation

Minimum Vdd limits IEM savings

Adapt
ive s

hutd
own be

yond
 IEM

2 CPU operation

1 CPU operation

1 CPU in dormant mode

MPCore extends control over power usage by providing
both voltage and frequency scaling and turning off unused processors

161616

High performance, low power spinlocks
static inline void _raw_spin_lock(spinlock_t *lock)
{

 unsigned long tmp;

 asm__ __volatile__(
“ 1: ldrex %0, [%1]\n“ ; exclusive read lock
“ teq %0, #0\n“ ; check if free
“ wfene \n” ; if not, wait (saves power)
“ strexeq %0, %2, [%1]\n“ ; attempt to store to the lock
“ teqeq %0, #0\n“ ; Were we successful ?
“ bne 1b“ ; no, try again

: "=&r" (tmp)
: "r" (&lock->lock), "r" (1), "r" (0)
: "cc", "memory");

 rmb(); // Read data memory barrier, Stops WO reads << lock write
} // This is NOP on MPCore since dependent reads are sync’ed

static inline void _raw_spin_unlock(spinlock_t *lock)
{
 wmb(); // data write memory barrier, Ensure payload write visible

// Ensure data ordering, but does not necessarily wait
_asm__ __volatile__(

" str %1, [%0]\n” ; Release, invalidates any LDREX
" mcr p15, 0, %1, c7, c10, 4\n” ; DrainStoreBuffer (flushes to RAM)
" sev \n” ; Signal to any CPU waiting

: "r" (&lock->lock), "r" (0)
: "cc", "memory");

}
See ./include/asm-arm/spinlock.h

171717

Demonstration of power save with MP

Lower power in dual-CPU than single-CPU at same MHz
 Reduction in context switching
 Increase in cache effectiveness

Single-CPU

Dual-CPU (same MHz, same Vt)

Reduced MHz allow for lower supply voltage
which enables more than 50% energy save

Using a single CPU design point requires in this
example 1 CPU @ 260MHz, consuming ~160mW

For a given workload requirement

For the same workload level
This is a single threaded application,
concurrency is with the operating system.

Unused processor are ‘turned off’
and isolated from OS (HOTPLUG)

Once you have threaded code, MP offers more performance at lower MHz and without suffering from the cost of
memory speed disparity and associated inefficiencies

181818

Realization of concurrency
Inherent within the
applications and
operating system
Video Playback

Browser

User Interface (X11)

Audio Playback

Other user applications

In addition, software developer can thread an application
Offloading tasks to specialist processors

Creating a ‘pool’ of tasks the operating system can share across general SMP processor

Exposing utility tasks that can be scheduled in the background

Threaded software is already very common even if not widely used in Linux today
Typical mechanism a OS/RTOS uses to enable developer to express multiple tasks on a (timeslided) single processor

Software that needs to share a processor itself is complex to write, debug and maintain

191919

ARM11 MPCore – Silicon - right first time
First test silicon of the 4 way SMP MPCore
multiprocessor available on schedule and
working to specification

Built for functionality testing but delivering the
equivalent of 1.2GHz ARM11 at around
600mW (130nm process)

 The highest performance
ARM yet!

Demonstrating openly available Linux
applications dynamically sharing the CPUs and
delivering stunning media performance

CT11-MPCore Coretile

ARM Integrator/CP
Baseboard

Linux 2.6 SMP with
standard X11
applications

202020

Closely coupled communications
ARM Generic Interrupt Controller, (currently moving to an architectural definition)

Software control of priority, routing and masking of interrupts
Current Linux implementation maps all IPI through only 1 of the 16 available IPI vectors

ARM11 MPCore implementation:
16 Levels of hardware prioritization

With ‘binary point’ capabilities to reduce level of pre-emption
Configurable between 0 and 255 hardware interrupt inputs

16 software ID per CPU for inter-processor communication
 Typically combined with shared memory for message passing

Timer and watchdog interrupts defined per CPU
Ability to ‘Interrupt-broadcast’ to, all but self, self, and specific

FIQ lines

Interrupt Distributor

 hardware interrupt lines

Timer

Wdog
CPU

interface

IRQ

Timer

Wdog
CPU

interface

IRQ

IRQ

Timer

Wdog
CPU

interface

Timer

Wdog
CPU

interfacePrivate
Peripheral

Bus

See ./arch/arm/common/gic.c

212121

Rapid access to shared data
The MPCore’s SCU was designed to resolves most of the traditional bottlenecks
around access to shared data and the scalability limitation introduced by
coherence traffic

Intelligent monitoring of operations on shared data allows optimized MESI state migration
Locally caching global cache state limits snoop interaction between CPU to only CPUs that
share data

Design limits snoop intrusion to only 4 cycles
Direct data intervention permits a local cache miss to resolved in a remote cache

Subsequently providing access to shared data 50% faster than the data could be
otherwise access from a shared L2 cache

The historically perceived scalability and performance limitations of SMP are no
longer valid

Multitasking applications typically scale more than linear to CPU count

222222

ARM MPCore – SCU

Key to fast MP:
Interface up to 4
multiprocessing CPU with each
other and the L2 memory
system

Slave 0

CPU core 0

ccb

Tag
Ctl

Tag Ram

Tag Ram

Tag Ram

Tag Ram

Tag Ram

Tag Ram

Tag Ram

Tag Ram

Direct Data Intervention

Master

64bit
AXI

64bit
AXI

Slave 3

CPU core 3

ccb

Private
Peripheral Bus

Act as Bus Manager in single CPU case
Redundant logic removed via synthesis scripts

Management of Direct Data Intervention (DDI) traffic

Management of coherent traffic at CPU core frequency
Maintain coherency between coherent L1 data caches,

NOTE: not data with instruction, or instruction with instruction
Route non coherent data traffic (CPU in AMP mode)
Routing of all instruction traffic

Duplicated L1
physical Tags

232323

Extracting thread level parallelism
Only required if task needs more performance than a single processor can
provide
Example: MPEG2 decoder

Sampled from the ARM SMP Evaluation Platform
Demonstrates utilization of addition processors

2 Threads

4 Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9

N umbe r of wor k i ng t hr e a ds

QCIF CIF

242424

Scalable general purpose processing
No modification of
Linux applications
Noticeably more
responsive interface
Power consumed
directly related to
CPU activity
Rich application
experience
Scaleable and low
power solution

ARM11 MPCore - Linux 2.6 X11 Multimedia Desktop

252525

ARM11 MPCore: Public Adoption
First public disclosure (July’03)

“4 CPU’s look interesting”

NEC in collaboration (Oct’04)
Bring SMP capable cores to market

MPCore announced (May’04)
“Desktop performance at handheld power
levels”

NVIDIA selects MPCore (May’05)
“To add applications processing”

Working first silicon (July’05)
“Highest performance ARM”

Renesas select MPCore (Feb’06)
“Consumer entertainment

262626

Take-aways
MPcore is a mature solution rapidly been adopted for the latest high-performance
and low power designs

General availability of testchip development boards

Kernel, tools and filesystem available

Full GNU tools support
Current Codesorcery release includes full thread-local-storage support and NPTL for efficient
threaded software

Supporting the high performance ARMv6 instruction set architecture

Full architectural kernel support
Mainline kernel from 2.6.15 includes all necessary ARM SMP patches for full MPCore support
including Adaptive shutdown to standby and reset

