

Hardware-assisted
software tracing

Adrien Vergé
adrienverge@gmail.com

talk
 about
 tracing

improve
 tracing

using

 hardware

1 Tracing
2 Hardware
3 Improvements

1

Tracing

“a technique used to understand
what is going on in a system in

order to debug or monitor it”

recording events

from the kernel:

in user-space: tracepoints inside your application

IRQ handlers, system calls,
scheduling activity, network activity, etc.

Why is my software crashing?
Where are the bottlenecks?

How to improve performance?

use less resources
run faster

save battery

a process spawns 2 threads:
#1 produces chunks of data
that #2 consumes

thread 1thread 1
thread 2thread 2

processprocess

time

ex
am

ple

example: LTTng+TMF
12:40:48.500 12:40:48.600 12:40:48.700Process TID PTID

bottleneck

bottleneck

bottleneck

26242

26243

26244

26226

26242

26242

12:40:48.500 12:40:48.600 12:40:48.700

CPU 0

CPU 1
CPU 2

CPU 3
CPU 4

CPU 5
CPU 6

CPU 7
IRQ 44

IRQ 46
IRQ 43

SOFT_IRQ 9
SOFT_IRQ 4

SOFT_IRQ 1
SOFT_IRQ 7

WAIT_BLOCKED
WAIT_FOR_CPU
USERMODE
SYSCALL
INTERRUPTED

example: LTTng+TMF
12:40:48.500 12:40:48.600 12:40:48.700Process TID PTID

bottleneck

bottleneck

bottleneck

26242

26243

26244

26226

26242

26242

WAIT_BLOCKED
WAIT_FOR_CPU
USERMODE
SYSCALL
INTERRUPTED

execvee c c

m

m

example: LTTng+TMF
12:40:48.500 12:40:48.600 12:40:48.700Process TID PTID

bottleneck

bottleneck

bottleneck

26242

26243

26244

26226

26242

26242

WAIT_BLOCKED
WAIT_FOR_CPU
USERMODE
SYSCALL
INTERRUPTED

read

exec

example: LTTng+TMF
12:40:48.500 12:40:48.600 12:40:48.700Process TID PTID

bottleneck

bottleneck

bottleneck

26242

26243

26244

26226

26242

26242

WAIT_BLOCKED
WAIT_FOR_CPU
USERMODE
SYSCALL
INTERRUPTED

read write wri

write

read

exec

tracing:
recording events

for use in further analysis

tracing:
recording events

for use in further analysis

So it's just logging?

tracing vs. logging

compact binary trace format
buffering — avoid disk IO

lockless algorithms
low-level optimizations

result : ~200 μs vs. ~200 ns / event

 tra
cin

g
us

ers heavy workload

servers

real-time

intrusion detection

Google IBM

Autodesk

CAEOPAL-RT

 tra
cin

g
us

ers heavy workload

servers

embedded

systemsreal-time

intrusion detection

Google IBM

Ericsson

 Freescale
Montavista

Nokia

Siemens
STMicroelectronics
Wind RiverAutodesk

CAEOPAL-RT

 tra
cin

g
us

ers heavy workload

servers

embedded

systemsreal-time

intrusion detection

YOU!

Google IBM

Ericsson

 Freescale
Montavista

Nokia

Siemens
STMicroelectronics
Wind RiverAutodesk

CAEOPAL-RT

Beyond Heisenberg:
observe without altering

— perform light (size) and fast (time)

— don't pollute memory space

— thousands of events / sne
ed

s

2

Hardware

Microchips are no longer
 just CPUs

cr
ed

it:
 A

R
M

Intel (x86)
BTS, LBR, PT...

Freescale (PowerPC)
Nexus Program Trace,

Data Acquisition...ARM
CoreSight
ETM, ETB, STM...

lots of tracing units

STM (event tracing)

ETM (execution tracing)

BTS (execution tracing)

lots of tracing units

supported by (probably good)
proprietary software

lots of tracing units

Do you have one of these?

widely spread

cr
ed

it:
 S

am
su

ng
,

ta
bl

e
to

lic
.c

om
,

pl
ay

er
.d

e,
 d

ig
ita

ltr
en

ds
.c

om

widely spread

Is your Intel CPU newer than this one?

cr
ed

it:
 I

nt
el

3

Improvements

3

Improvements
1/3 STM on ARM

System Trace Module (STM)

help software
recording

eventsGoal:

System Trace Module (STM)

Provides
dedicated resources

bus, buffer, timestamping
Need to

instrument
software

CPU
ETM

STM

ETB

system bus

timestamping

system-on-chip

System Trace Module (STM)

 im
ple

me
nt

at
ion “LTTng-equivalent”

The traced process is instrumented:
calling tracepoint() writes to the STM.

Embedding payload is possible.
A consumer process retrieves

generated traces and stores them.

 im
ple

me
nt

at
ion

optimized, compact but
proprietary format

Traces are
encoded in STP.

res
ult

s

0

5

10

15

20

only tracepoints computation + tracepoints

tim
e

pe
r

ite
ra

tio
n

(µ
s)

no tracing

LTTng-UST

STM + ETB

indicative benchmark: overhead mostly depends on the traced application!

res
ult

s

0

5

10

15

20

only tracepoints computation + tracepoints

tim
e

pe
r

ite
ra

tio
n

(µ
s)

no tracing

LTTng-UST

STM + ETB

3

Improvements
2/3 ETM on ARM

trace
executionGoal:

Embedded Trace Macrocell (ETM)

trace
executionGoal:

Embedded Trace Macrocell (ETM)

i.e. save every executed
instruction address

Embedded Trace Macrocell (ETM)

Provides
dedicated resources

address comparators,
buffer, timestamping

Embedded Trace Macrocell (ETM)

Provides
dedicated resources

address comparators,
buffer, timestamping

 Can focus on a
specific process or function
 triggers upon custom conditions

Embedded Trace Macrocell (ETM)

Provides
dedicated resources

address comparators,
buffer, timestamping

No need to
instrument

software

 Can focus on a
specific process or function
 triggers upon custom conditions

CPU
ETM

STM

ETB

system bus

timestamping

system-on-chip

Embedded Trace Macrocell (ETM)

 im
ple

me
nt

at
ion ETM not meant

to trace events

 im
ple

me
nt

at
ion

do execution tracing
on event addresses

set address comparators
to trigger in [event, event+4]

ETM not meant
to trace events

Idea:

 im
ple

me
nt

at
ion needed to write

kernel support for

process and
function tracing

res
ult

s

0

5

10

15

20

25

30

35

40

45

50

only computation more computation

tim
e

pe
r

ite
ra

tio
n

(µ
s)

E
V

E
N

T
 L

O
S

S

no tracing
LTTng-UST
ETM + ETB

3

Improvements
3/3 BTS on x86

trace
executionGoal:

Branch Trace Store (BTS)

CPU

BTS

RAM

x86 host

branch records

4015a8

7f2aac77e024
7f2aac77e012

40ef26
4015b0

4015b4

Branch Trace Store (BTS)

does not provide dedicated buffers

cannot focus on a specific process or
function: traces every branch!

Branch Trace Store (BTS)

$ perf record -e branches:u -c 1 -d ./myprogram
$ perf script -f time,ip,addr
101918.272364: ffffffff814a6f2c => 7f8d7b9b3180
101918.272364: ffffffff814a6f2c => 7f8d7b9b3180
101918.272364: 7f8d7b9b3183 => 7f8d7b9b6730
101918.272364: ffffffff814a6f2c => 7f8d7b9b6730
101918.272364: ffffffff814a6f2c => 7f8d7b9b674f
101918.272364: ffffffff814a6f2c => 7f8d7b9b6756
101918.272364: 7f8d7b9b67c2 => 7f8d7b9b67df
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67ef => 7f8d7b9b6a30
101918.272364: 7f8d7b9b6a38 => 7f8d7b9b6a58
101918.272364: 7f8d7b9b6a62 => 7f8d7b9b6bc0
101918.272364: 7f8d7b9b6bd7 => 7f8d7b9b67d3
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8
101918.272364: 7f8d7b9b67e3 => 7f8d7b9b67c8

 “Is
hardware-assisted branch tracing
 faster than
 pure-software event tracing?”

BTS not meant
to trace events

if enabled, traces every branch

 im
ple

me
nt

at
ion hardware-traced

with BTS:

software-traced
with LTTng:

simple program,
every branch
recorded

same program,
add a tracepoint()
at every branch

res
ult

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tim
e

pe
r

ite
ra

tio
n

(µ
s)

program branching rate (branch/s)

no tracing

LTTng-UST

BTS with perf

core
0

64K

512K

core
1

64K

512K

core
6

64K

512K

core
7

64K

512K

disk

u
se

r-
sp

a
ce

system buffer

original perf
BTS writes trace

to a dedicated buffer

trace is copied to
a bigger memory zone upon
buffer full or context switch

user stores trace to
disk using the write

system call

possible copy in
another buffer because

no O_SYNC flag

core
0

core
1

core
6

core
7

disk

64K

512K
×

number
of cores

new “spliced” perf
BTS writes trace

to a dedicated buffer

upon buffer full or
context switch, move to

the next sub-buffer

filled sub-buffers
are labeled to be

written to disk later

writing is done
by a kernel task
in user context

res
ult

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tim
e

pe
r

ite
ra

tio
n

(µ
s)

program branching rate (branch/s)

no tracing
LTTng-UST
BTS with perf
BTS with "spliced" perf

Results
-75 % overhead compared to LTTng-UST
needs post-decodingSTM

ETM

BTS

-30 % to -50 % overhead
limited number of tracepoints
no payload

not suited for event tracing (not flexible)
compared to vanilla perf, 2× faster

otherhardware
Freescale: Data Acquisition

Program Trace

Intel: Processor Trace

last words

tracing
helps you build
 efficient
 software

using LTTng:
very low footprint

Cortex-A9: ~ 5 sµ / event
 Core i7: ~ 200 ns / event

using hardware:
almost zero footprint

trace in production!

Links
LTTng and TMF:

https://lttng.org/

STM libraries:
https://github.com/adrienverge/libcoresightomap4430

ETM patch:
https://lkml.org/lkml/2014/1/30/259

BTS patch:
https://github.com/adrienverge/linux/tree/patch_perf_bts_splice

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

