Hardware-assisted software tracing

Adrien Vergé adrienverge@gmail.com

talk about tracing

Improve tracing using hardware

Tracing Hardware Improvements

racing

"a technique used to understand what is going on in a system in order to debug or monitor it"

recording events

from the kernel:

IRQ handlers, system calls, scheduling activity, network activity, etc.

in user-space:

tracepoints inside your application

Why is my software crashing? Where are the bottlenecks? How to improve performance?

use less resources run faster save battery

a process spawns 2 threads: #1 produces chunks of data that #2 consumes

tracing: recording events

```
16.246609] Bluetooth: GCO socket layer initialized The Control of 
16.496886] Bluetooth: BNEP (Ethernet Emulation) ver 1.3
16.4968891 Bluetooth: BNEP filters: protocol multicast
16.496897] Bluetooth: BNEP socket layer initialized
17.045998] NFSD: Using /var/lib/nfs/v4recovery as the NFSv4 state recovery directory
17.046487] NFSD: starting 90-second grace period (net ffffffff81886100)
17.327576] e1000e 0000:00:19.0: irg 42 for MSI/MSI-X
17.430960] e1000e 0000:00:19.0: irq 42 for MSI/MSI-X
17.431056] IPv6: ADDRCONF(NETDEV UP): eth0: link is not ready
19.452905] e1000e: eth0 NIC Link is Up 100 Mbps Half Duplex, Flow Control: Rx/Tx
19.452910] e1000e 0000:00:19.0 eth0: 10/100 speed: disabling TSO
19.456253] IPv6: ADDRCONF(NETDEV CHANGE): eth0: link becomes ready
21.325535] systemd-logind[3544]: New seat seat0.
21.344148] systemd-logind[3544]: Watching system buttons on /dev/input/event2 (Power Button)
21.344198] systemd-logind[3544]: Watching system buttons on /dev/input/event3 (Video Bus)
21.344242] systemd-logind[3544]: Watching system buttons on /dev/input/event1 (Power Button)
21.344788] systemd-logind[3544]: New session 1 of user Debian-gdm.
21.344859] systemd-logind[3544]: Linked /tmp/.X11-unix/X0 to /run/user/104/X11-display.
31.982144] systemd-logind[3544]: New session 2 of user adrien.
31.982187] systemd-logind[3544]: Linked /tmp/.X11-unix/X0 to /run/user/1000/X11-display.
```

37.509891] FAT-fs (sdb1): utf8 is not a recommended IO charset for FAT filesystems, filesystem will

tracing: recording events

```
serinited analysis
          Bluetooth: F
16.3173031
16.3173061
16.4968861
16.4968891 Bluetooth: BNEP filters: protocol multicast
16.496897] Bluetooth: BNEP socket layer initialized
17.045998] NFSD: Using /var/lib/nfs/v4recovery as the NFSv4 state recovery directory
17.046487] NFSD: starting 90-second grace period (net ffffffff81886100)
17.327576] e1000e 0000:00:19.0: irg 42 for MSI/MSI-X
17.430960] e1000e 0000:00:19.0: irg 42 for MSI/MSI-X
17.431056] IPv6: ADDRCONF(NETDEV UP): eth0: link is not ready
19.452905] e1000e: eth0 NIC Link is Up 100 Mbps Half Duplex, Flow Control: Rx/Tx
           10 0e 0000:00 19.0 eth0: 10/100 speed disabling TS0
19.4529101
               Id Logind 3544) New end Logind 35441: Vatc i
19.4562531
                                            io unk be
21.325535]
21.344148] sys
                                                buttors
                                Natc i
21.344198]
21.344242] systemd-logind[3544]: Watering system buttons on
21.344788] systemd-logind[3544]: New session 1 of user Debian-gdm.
21.344859] systemd-logind[3544]: Linked /tmp/.X11-unix/X0 to /run/user/104/X11-display.
31.982144] systemd-logind[3544]: New session 2 of user adrien.
31.982187] systemd-logind[3544]: Linked /tmp/.X11-unix/X0 to /run/user/1000/X11-display.
```

37.509891] FAT-fs (sdb1): utf8 is not a recommended IO charset for FAT filesystems, filesystem will

tracing vs. logging

compact binary trace format buffering — avoid disk IO lockless algorithms low-level optimizations

result: ~200 µs vs. ~200 ns / event

heavy services
heavy services
BM
Google

intrusion detection

Autodesk OPAL-RT CAE real-time

Heald Rolliels

Google

Autodesk **OPAL-RT**

real-time

intrusion detection

Siemens STMicroelectronics Wind River Freescale Montavista Ericsson bedded sustems

heavy services

Google IBM

Autodesk L-RT CAE

real-time

intrusion detection

Siemens STMicroelectronics Wind River Freescale **Montavista** Ericsson

Beyond Heisenberg: observe without altering

- perform light (size) and fast (time)
- don't pollute **memory** space
- thousands of events / s

Hardware

Microchips are no longer just CPUs

lots of tracing units

Freescale (PowerPC)
Nexus Program Trace,
Data Acquisition...
CoreSight

ETM, ETB, STM...

Intel (x86) BTS, LBR, PT...

lots of tracing units

STM (event tracing) (execution tracing) ETM BTS (execution tracing)

lots of tracing units

supported by (probably good) proprietary software

credit: Samsung, tabletolic.com, player.de, digitaltrends.com

widely spread

Do you have one of these?

widely spread

credit: Intel

Is your Intel CPU newer than this one?

3

mprovements

3

mprovements

1/3

STM on ARM

System Trace Module (STM)

help software recording events

System Trace Module (STM)

Provides
dedicated resources
bus, buffer, timestamping

Need to instrument software

System Trace Module (STM)

"LTTng-equivalent"

The traced process is instrumented: calling tracepoint() writes to the STM.

Embedding payload is possible.

A consumer process retrieves generated traces and stores them.

Traces are STP encoded in STP.

optimized, compact but proprietary format

indicative benchmark: overhead mostly depends on the traced application!

mprovements

ETM on ARM

God: execution

God: execution

i.e. save every executed instruction address

Provides dedicated resources

address comparators, buffer, timestamping

Can focus on a specific process or function

triggers upon custom conditions

Provides dedicated resources

address comparators, buffer, timestamping

Can focus on a specific process or function

triggers upon custom conditions

Provides dedicated resources

address comparators, buffer, timestamping

No need to instrument software

ETM not meant to trace events

ETM not meant to trace events

1469:

do execution tracing on event addresses

set address comparators to trigger in [event, event+4]

needed to write kernel support for process and function tracing

3

Improvements

3/3

BTS on x86

Branch Trace Store (BTS)

God: execution

Branch Trace Store (BTS)

Branch Trace Store (BTS)

does not provide dedicated buffers

cannot focus on a specific process or function: traces every branch!

```
record -e branches:u -c 1 -d ./myprogram
$ perf script -f time,ip,addr
101918.272364:
                ffffffff814a6f2c =>
                                          7f8d7b9b3180
                ffffffff814a6f2c =>
101918.272364:
                                          7f8d7b9b3180
                     7f8d7b9b3183 =>
                                          7f8d7b9b6730
101918.272364:
                ffffffff814a6f2c =>
101918.272364:
                                          7f8d7b9b6730
                ffffffff814a6f2c =>
101918.272364:
                                          7f8d7b9b674f
                ffffffff814a6f2c =>
101918.272364:
                                          7f8d7b9b6756
101918.272364:
                     7f8d7b9b67c2 =>
                                          7f8d7b9b67df
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67ef =>
                                          7f8d7b9b6a30
101918.272364:
101918.272364:
                     7f8d7b9b6a38 =>
                                          7f8d7b9b6a58
                                          7f8d7b9b6bc0
101918.272364:
                     7f8d7b9b6a62 =>
                                          7f8d7b9b67d3
101918.272364:
                     7f8d7b9b6bd7 =>
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
101918.272364:
                     7f8d7b9b67e3 =>
                                          7f8d7b9b67c8
```

BTS not meant to trace events

if enabled, traces every branch

"Is hardware-assisted branch tracing faster than pure-software event tracing?"

hardware-traced with BTS:

simple program, every branch recorded

software-traced with LTTng:

same program, add a tracepoint() at every branch

program branching rate (branch/s)

original perf

new "spliced" perf

program branching rate (branch/s)

Results

STM

-75 % overhead compared to LTTng-UST needs post-decoding

ETM

-30 % to -50 % overhead limited number of tracepoints no payload

BTS

not suited for event tracing (not flexible) compared to vanilla perf, 2× faster

Freescale:

Data Acquisition **Program Trace**

nte: Processor Trace

last words

tracing helps you build efficient Software

using LTTng: very low footprint

Cortex-A9: $\sim 5 \mu s$ / event

Core i7: ~ 200 ns / event

using hardware: almost zero footprint

trace in production!

Links

LTTng and TMF:

https://lttng.org/

STM libraries:

https://github.com/adrienverge/libcoresightomap4430

ETM patch:

https://lkml.org/lkml/2014/1/30/259

BTS patch:

https://github.com/adrienverge/linux/tree/patch_perf_bts_splice

Thank you

Questions?