Using the fast IRQ in ARM Linux

(the official support and the fig-engine external package)

ELC Europe 2009
Grenoble October 15th 2009

Alessandro Rubini
Independent consultant,
contract professor, Pavia University

<rubini@linux.it> <rubini@gnudd.com> <rubini@unipv.it>

ARM modes and registers

The ARM has a FIQ CPU mode, with specific registers

;10 |:I usable in user mode
re
3 [ sysemmodssony
r4
rs
15]
I7 ~
5 g f!cl
) rg fig
r10 | o fig|
11 1 fig
e 2 fig
3 3_fig
=p 4 fig
15 (PC)
oo, st} Scan g SPSAund]
CPSH —Pon ha |.SPSH svol SPSA ekt
wser mods fig Ve abort irq undefined

mode mode mode mode: mode

B19945 Addizon Wesley Longman

What is the FIQ

The ARM core offers two different maskable interrupts
- The normal IRQ, used by all devices through a cascade of muxes
- The "fast” IRQ, a.k.a. FIQ, that nobody uses

We can thus consider the FIQ as a non-maskable interrupt,
even though, if needed, it can be masked just like the irq

The FIQ as a input line can be connected to any peripheral

= All interrupt controllers (so far) allow any interrupt

to be routed to either irq of fig

= This is usually limited to the first level of multiplexers (32 irq sources)
With a timer and the FIQ, you can arrange for RT activities

- A few lines of assembly for critical tasks

= Or a real task, periodic or aperiodic, to do I/O or whatever

« Or you could connect a scheduler as well

This however is by no means a replacement for xenomai/rtai

CONFIG_FIQ and set_fig_handler()

The mainline kernel offers some FIQ support:
- CONFIG_FIQ can be activated in the configuration
By default only a few machines define CONFIG_FIQ
All other machines force CONFIG_FIQ to undef, for no real reason
- There are a few functions, in <arm/figq.h>, for C code to use:

extern void set_fiqg handler (void *start, unsigned int length);
extern void set fig regs(struct pt regs *regs);

extern wvoid get_fiq regs(struct pt_regs *regs);

/* a few more */

Client code can define a small handler,

which is usually written in assembly
- set_fiq_handler() copies the code to the proper place in RAM
- client code can pre-set the banked registers or read them




An example use of CONFIG_FIQ

In a recent project, | had to generate a 60Hz PWM
- It was used for the LCD backlight
- The hardware PWM couldn’t run at such low frequencies
- All of the code, C and assembly, is shown in this page

.glebl pei fig init
~glebl ped fig fini poi_fiqg base:
.globl pei_fig base werd'0
poi_fig init: pount.
1dr rl0, poi_fig base -word O
ldr x10, [rl0, §#0x20] duty_addr:
/* acked by reading the status register */ .word poi_fig duty
ldr r10, count
add 10, 10, #1
and rio, rlo, foxee
str rl0, count
1ar rll, duty sadr
1dr 11, [rll]
cmp £10, =11
1dr rlD, =Oxfefffd3o /+ PE3: set at 0x30 */
addgt  rlo, rlo, #4 /* or clear at Ox34 +/
mov r11, #0x200
str i1, [rl0)
/* return to caller and mode */
subs pe, 1lr, R4

.ltorg

/* ioremap the timer block for asm */
poi_ fiq base = iocremap nocache (base, 0xd40);

/* Register the handler */

ret = claim fig(&poi fig handler);

set_fig handler (&poi fig init,
&poi_fig fini - &peoi fig init);

Bprintk and sysctl-stamp

fig-engine first offers support for diagnostics

bprintk.ko is a buffered printk
= You can't call printk from the FIQ context
Actually you physically can, but it may explode
Linux may be in a critical sections when FIQ runs
- bprintk offers a printk-like function, with a local buffer
» The accumulated strings are sent to printk in a kernel timer

sysctl-stamp is a simple timestamping mechanism
- It uses the (somewhat deprecated) sysctl primitives
= The client module can record timestamping events
« The client can timestamp at any time from any context
- The user can read from and write to in /proc/sys/dev/
read: maximum, miminum, runing average
write: reset counters to start with fresh data

fig-engine: supporting external modules

A pair of years ago, | wrote the fig-engine set of modules
- Supports a more complex task, written in C
« Supports modules for easier development
- Offers some diagnostics help

The package is a kernel patch and a few modules
- We can't afford a page fault ("data abort"”) in fiq context
« The kernel patch ensures no data abort ever happens in FIQ.

The patch, not submitted to mainline, modifies vmalloc
- When vmalloc is called, maps are exported to all processes
» This is needed as | use vmalloc space in fig-misc.ko
- The patch is small, but most likely not acceptable for mainline
It uses #ifdef ARM in mm/vmalloc.c
It is for a very uncommon use of the system

http://gnudd.com/pub/samplecode/fig-—engine-1.3.tar.gz

fig-misc: communicating with user space

The fig-misc module allocates a vmalloc area, exported in mmap
« The size is a parameter, defaults to 64kB
- No read or write is offered, as | love mmap (and I'm lazy)

FIQ context can't call Linux functions, but it can share memory
- Tipically the FIQ task either inputs or outputs data
« FIQ task and process must agree about a protocol to avoid races
- We have all the usual issues of concurrent access

fig-misc.ko isn't really part of FIQ operation
= It just allocates and exports the buffer for fig-task
- Being a vmalloc area accessed from FIQ, the vmalloc patch is required




fig-engine and fig-task: make a real-time task

fig-engine is the main actor of the package

- It can be configured for IRQ (default) or FIQ

- It deals with all hardware registers, offering a C API
A few diffent ARM families are supported

+ AT91SAM926x (used in production)

- PXA255/270 (used in production)

- STE Nomadik (beta stage, needs audit and publication in fig-engine-1.4)

= iMX21 (work in progress)

« Samsung S3C440 (on request, not published as i can't currently test it)
fig-task is the public-doman example of a user module

- The default implementation just toggles a GPIO pin

= It is public domain (all the rest is GPL) to allow proprieary users

It is only sample code, | let real programmers choose their license

fig-empty is another task example

- It toggles the bit immediately and before exiting,

» Useful to time hw overhead in fig acknowledge and timer programming

Use case: ADC/DAC without FIFO (PXA270)

This project is meant to test bluetooth amplifiers

for safety helmets, 24 of them at a time
= The application must feed 1 DAC and read 2 ADCs every 50 usec

11

Use case: a cash register with S3C440

This prints tickets at 20cm/s, running the whole printer

2008

24 Jan
15:44:37

- The top track shows 2 motor coils and spi transfer, driven in figq context
» The bottom track shows two heaters used in the printer, driven in fig context

10

Other uses: PBX, motor control

fig-engine has been used in a PBX (code written by client)
« Several input lines must leave the CPU in a TDM channel
- The peripheral-to-RAM DMA saves linear buffers
- The RAM-to-peripheral DMA needs interleaved channels
- The FlQ is fired every 64us to shuffle the bytes in memory

In another case, it is used in a motor-control application
« 128us cycle time, to communicate with axis control
- Previously the client used RTAI on x86 and a PCI digital-io board
- Now it's done with FIQ on AT91SAM9263 with GPIO signals

12




Hard figures: fig sample code on PXA270

The fig-busy module has been introduced for diagnostics
- It continuously toggles a gpio pin from process context ("insmod" process)
- Running fig-empty on another pin allows to see how things mix

This way, | discovered the PXA270 is horribly slow in its /O
- It takes 6 usec just to acknoledge fiq and reprogram the timer
- It takes 0.8 usec to move a gpio pin

The figures show fig-task and fig-empty with busy.ko running

v RO g

M10.0us A Ch

AT

13

Live example: STE Nomadik

At the conference a denostration has been run,
showing fig-task running on both normal IRQ and FIQ
on the nhk8815 evaluation board for the Nomadik ARM9 cpu

15

Hard figures: fig running on AT91SAM9263

On AT@200MHz it runs at higer rates than on PXA@400MHz
- The sample code at 20 usec is pretty stable
- fig-empty takes only 0.7 usec to keep things running
- There is, however, a delay on switching modes
The figures show fig-task at 19usec and fig-empty
- This also shows a 0.1 usec jitter in duration, for cache effects

14




