

Drew Fustini <dfustini@baylibre.com>

\$ whoami

- Linux kernel developer, <u>BayLibre</u>
 - Five team members presenting at ELC this week
 - Neil Armstrong yesterday: <u>Introduction to Pin Muxing and GPIO Control Under Linux</u>
 - Bartosz Golaszewski tomorrow, Wednesday, at 10:30am
 "Plan to Throw One Away" Pitfalls of API Design for Low-level User-space Libraries
 and Kernel Interfaces
 - Kevin Hilman & Alexandre Mergnat tomorrow, Wednesday, at 2:45pm
 A New user(space): Adding RISC-V Support to Zephyr RTOS

\$ whoami

- Board of Directors, <u>BeagleBoard.org Foundation</u>
 - <u>BeagleV</u> initiative to create open source hardware RISC-V boards
- Board of Directors, <u>Open Source Hardware Association (OSHWA)</u>
 - OSHW Certification Program (certification.oshwa.org)
- RISC-V Ambassador for RISC-V International

RISC-V this week (virtual)

- Perf on RISC-V: The Past, the Present and the Future
 - Monday, September 27, 11:15am 12:05pm (Atish Patra & Anup Patel)
- Building a Low-key XIP-enabled RISC-V Linux System
 - Tuesday, September 28, 4:00pm 4:50pm (Vitaly Vul)
- Initializing RISC-V: A Guided Tour for ARM Developers
 - Tuesday, September 28, 5:00pm 5:50pm (Ahmad Fatoum & Rouven Czerwinski)
- A New user(space): Adding RISC-V Support to Zephyr RTOS
 - Wednesday, September 29, 2:45pm 3:35pm (Kevin Hilman & Alexandre Mergnat)

RISC-V this week (in-person)

- How the Fastest Growing Open Hardware Project is Leveraging Visibility [...]
 - Tuesday, September 28, 11:25am 11:50am (Kim McMahon, RISC-V International)
- Growing Diversity in Open Hardware: It's a Task for All of Us!
 - Tuesday, September 28, 12:25pm 12:50pm (Kim McMahon, RISC-V International)
 - Open Hardware Diversity Alliance formed in August for "professional advancement of women and underrepresented individuals in open source hardware."
- Open Hardware: Skyrocketing Momentum and Global Adoption from Embedded to Enterprise
- 6

Tuesday, September 28, 4:00pm - 4:50pm (Calista Redmond, CEO RISC-V Intl.)

RISC-V this week (in-person)

- Open Software, Open Hardware with RISC-V and Zephyr communities
 - Thursday, September 30, 9:00 AM 12:30 PM
 - Pre-registration is required. To register, add it to your <u>OSS + ELC registration</u>
 - o 9:00 9:30: Coffee networking
 - 9:30 9:45: Welcome / keynote
 - 9:45 11:00: Breakouts to tables for table talks / BoF
 - o 11:00 12:00: Demos and lightning talks
- 6

o 12:00 - 12:30: Coffee networking

RISC-V last week

- Linux Plumbers Conference: RISC-V microconference
 - <u>Live stream on YouTube</u>, <u>Detailed notes with links</u>
 - Sessions
 - The RISC-V platform specification
 - ACPI for RISC-V
 - What's the problem with D1 Linux upstream?
 - Puzzle for RISC-V ifunc
 - Towards continuous improvement of code-generation for RISC-V

RISC-V (virtual) meetups around the world

V GROUP, ENGLAND

United Kingdom

AVIV DISTRICT

VIENNA RISC-V GROUP

Austria

Israel 💌

ENGLAND

United Kingdom

Find many more at: https://community.riscv.org/

Germany =

RISC-V Open Hours

- Bi-weekly meetup to provide the opportunity for the community to interact in real-time, with a particular focus on RISC-V support in open source software projects and RISC-V development boards.
- Join the <u>mailing list</u> for announcements and discussion
- Wednesday, Oct 13, 7:00 PM (US PDT) which is Thursday morning in Asia
- Wednesday, Nov 3, 8:00 AM (US PDT) which is European late afternoon

RISC-V: a Free and Open ISA

- <u>Started in 2010</u> by computer architecture researchers at UC Berkeley
 - Krste Asanovic RISC-V: The Next Ten Years
- Why "RISC"?
 - RISC = Reduced Instruction Set Computer
- Mhy "V"?
 - 5th RISC instruction set to come of out UC Berkeley
- Why is it "Free and Open"?
- Specifications licensed as Creative Commons Attribution 4.0 International

What is different about RISC-V?

- Simple, clean-slate design
 - Avoids micro-architecture dependent features
- Small standard base, with multiple standard extensions
 - Suitable for everything from tiny microcontrollers to supercomputers
- Stable
 - Base and standard extensions are frozen
 - Additions via optional extensions, not new versions of base ISA

RISC-V Base Integer ISA

RV32I: 32-bit

less than 50 instructions needed!

RV64I: 64-bit

Most important for Linux

RV128I: 128-bit

Future-proof address space

	31:12			rd	0110111	LUI	
imm[31:12]					rd	0010111	AUIPC
imm[20 10:1 11 19:12]					rd	1101111	JAL
imm[11:0]			rs1	000	rd	1100111	JALR
imm[12 10:5]	rs	2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs	2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs	2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs	2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12]10:5]	rs	2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs	2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:0]		rs1	000	rd	0000011	LB	
imm[11:0]			rs1	001	rd	0000011	LH
imm	[11:0]		rs1	010	rd	0000011	LW
imm	[11:0]		rs1	100	rd	0000011	LBU
imm	[11:0]		rs1	101	rd	0000011	LHU
imm[11:5]	rs	2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs	2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs	2	rs1	010	imm[4:0]	0100011	SW
imm	[11:0]		rs1	000	rd	0010011	ADDI
imm			rs1	010	rd	0010011	SLTI
imm			rs1	011	rd	0010011	SLTIU
imm	11:0		rs1	100	rd	0010011	XORI
imm	11:0		rs1	110	rd	0010011	ORI
imm[11:0]		rs1	111	rd	0010011	ANDI	
0000000	sha	mt	rs1	001	rd	0010011	SLLI
0000000	sha	mt	rs1	101	rd	0010011	SRLI
0100000	sha	mt	rs1	101	rd	0010011	SRAI
0000000	rs	2	rs1	000	rd	0110011	ADD
0100000	rs	2	rs1	000	rd	0110011	SUB
0000000	rs	2	rs1	001	rd	0110011	SLL
0000000	rs	2	rs1	010	rd	0110011	SLT
0000000	rs	-	rs1	011	rd	0110011	SLTU
0000000	rs		rs1	100	rd	0110011	XOR
0000000	rs		rs1	101	rd	0110011	SRL
0100000	rs		rs1	101	rd	0110011	SRA
0000000	rs		rs1	110	rd	0110011	OR
0000000	rs		rs1	111	rd	0110011	AND
		succ	rs1	000	rd	0001111	FENCE
	000000	-	00000	000	00000	1110011	ECALL
000000000000			00000	000	00000	1110011	EBREA

RISC-V Standard Extensions

- M: integer multiply/divide
- A: atomic memory operations
- F, D, Q: floating point, double-precision, quad-precision
- **G**: "general purpose" ISA, equivalent to IMAFD
- <u>C</u>: compressed instructions conserve memory & cache like ARM Thumb
- Linux distros like Debian and Fedora target RV64GC

Learn more about RISC-V

Get up-to-speed quick with

the RISC-V Reader:

riscvbook.com

"Is RISC-V an Open Source processor?"

RISC-V is a set of specifications under an open source license

RISC-V implementations can be open source or proprietary

- Open specifications make open source implementations possible
- An open ISA enables open source processor implementations

RISC-V Privileged Architecture

- Ratified specification
 - RISC-V Instruction Set Manual Volume II: Privileged Architecture
- Three privilege modes
 - User (U-mode): applications
 - Supervisor (S-mode): OS kernel
 - Machine (M-mode): firmware

RISC-V Boot Flow

- M-mode: boot ROM and first-stage bootloader
- S-Mode: U-Boot loads and jumps to the Linux kernel
- Similar flow to ARM SoC but something new in the middle: SBI

What is SBI?

- Supervisor Binary Interface is a non-ISA RISC-V specification
- The calling convention between S-mode and M-mode
- allows S-mode software like the Linux to be portable across RISC-V implementations by abstracting platform specific functionality.

What is SBI?

- SBI is required by the <u>UNIX-Class Platform Specification</u>
 - Mailing list: <u>tech-unixplatformspec</u>
 - This will be replaced by upcoming <u>RISC-V Platform Specification</u>
- Base Extension
 - query SBI specification version and implementation
 - o query machine vendor, architecture and implementation
- Timer Extension, IPI Extension, RFENCE Extension

What is OpenSBI?

OpenSBI is an open source SBI implementation

Layers of implementation

Provides run-time service in M-mode

OpenSBI Layers

OpenSBI Generic Platform

- Preference is to use **Generic platform** when possible
- Device Tree based platform where all platform specific functionality is based on DT passed by the previous boot stage.
- Generic platform allows us to use the same OpenSBI firmware binaries across a variety of emulators and dev boards
- RISC-V systems using Generic Platform
 - QEMU, Spike simulator, SiFive HiFive Unleashed, Alibaba T-HEAD C9xx based boards

Hypervisor extension

- Hypervisor Supervisor (HS-mode) and Virtualized Supervisor (VS-mode)
 - o Included in Privileged 1.12 spec, currently in 45 day public review before ratification

What is new in SBI?

• <u>v0.3</u>

- Suspend added to Hart State Management (HSM)
- <u>Performance Monitoring Unit (PMU)</u>
- System reset extension
- NOTE: <u>Hart is a hardware thread</u>

Figure 3. SBI HSM State Machine

- Hardware execution context that contains state mandated by ISA: PC and registers
- My laptop has 4 cores, each of core has two hyperthreads, so it could be described as having 8 harts if it was RISC-V (e.g. the number of penguins on the boot screen)

OpenSBI Domain Support

- An <u>OpenSBI domain</u> is a system-level partition (subset) of underlying hardware having its own memory regions and HARTs
- Talk by Anup Patel

UEFI Support

- <u>U-Boot</u> and <u>TianoCore edk2</u> both have UEFI implementations on RISC-V
- Grub2 can be an UEFI payload on RISC-V
- <u>UEFI support for RISC-V</u> added in <u>Linux 5.10</u>

RISC-V emulation in QEMU

- Support for <u>RISC-V in mainline QEMU</u>
 - QEMU can boot 32-bit and 64-bit mainline Linux kernel
 - QEMU sifive_u machine can boot same binaries as the HiFive Unleashed board
 - Draft versions of Hypervisor and Vector extensions supported
- Embedded Linux from scratch in 45 minutes on RISC-V!
 - Tutorial by By Michael Opdenacker from Bootlin at FOSDEM 2021

RISC-V in the Linux kernel

- Initial port by Palmer Dabbelt merged in Linux 4.15
 - Mailing list: <u>linux-riscv@lists.infradead.org</u> (<u>archive</u>)
- "What's missing in RISC-V Linux, and how YOU can help!"
 - o Björn Töpel at <u>Munich RISC-V meetup</u> (jump to 43:25)
 - "It's a fun, friendly, and still pretty small community"
 - "A great way to learn the nitty gritty details of the Linux kernel"

Kernel feature support for riscv arch ($\vee 5.12$ -rc2)

```
dp7@x1:~/linux$ ./Documentation/features/list-arch.sh riscv |ack TODO --passthru
# Kernel feature support matrix of the 'riscv' architecture:
     core/ cBPF-JIT
                                                              HAVE CBPF JIT # arch supports cBPF JIT optimizations
     core/ eBPF-JIT
                                                              HAVE EBPF JIT # arch supports eBPF JIT optimizations
     core/ generic-idle-thread : ok
                                                     GENERIC SMP IDLE THREAD # arch makes use of the generic SMP idle thread facility
     core/ jump-labels
                                                       HAVE ARCH JUMP LABEL # arch supports live patched, high efficiency branches
     core/ thread-info-in-task : ok
                                                        THREAD INFO IN TASK # arch makes use of the core kernel facility to embedd thread info in task struct
     core/ tracehook
                                                        HAVE ARCH TRACEHOOK # arch supports tracehook (ptrace) register handling APIs
    debug/ debug-vm-pgtable
                                                   ARCH HAS DEBUG VM PGTABLE # arch supports pgtable tests for semantics compliance
    debug/ gcov-profile-all
                                                   ARCH HAS GCOV PROFILE ALL # arch supports whole-kernel GCOV code coverage profiling
                                                            HAVE ARCH KASAN # arch supports the KASAN runtime memory checker
    debug/ KASAN
    debug/ kcov
                                                              ARCH HAS KCOV # arch supports kcov for coverage-guided fuzzing
    debug/ kgdb
                                                             HAVE ARCH KGDB # arch supports the kGDB kernel debugger
    debug/ kmemleak
                                                        HAVE DEBUG KMEMLEAK # arch supports the kernel memory leak detector
    debug/ kprobes
                                                               HAVE KPROBES # arch supports live patched kernel probe
    debug/ kprobes-on-ftrace
                                                      HAVE KPROBES ON FTRACE # arch supports combined kprobes and ftrace live patching
                                                            HAVE KRETPROBES # arch supports kernel function-return probes
    debug/ kretprobes
    debug/ optprobes
                                                             HAVE OPTPROBES # arch supports live patched optprobes
    debug/ stackprotector
                                                        HAVE STACKPROTECTOR # arch supports compiler driven stack overflow protection
    debug/ uprobes
                                                      ARCH SUPPORTS UPROBES # arch supports live patched user probes
    debug/ user-ret-profiler
                                                  HAVE USER RETURN NOTIFIER # arch supports user-space return from system call profiler
       io/ dma-contiguous
                                                        HAVE DMA CONTIGUOUS # arch supports the DMA CMA (continuous memory allocator)
  locking/ cmpxchq-local
                                                         HAVE CMPXCHG LOCAL # arch supports the this cpu cmpxchq() API
  locking/ lockdep
                                                            LOCKDEP SUPPORT # arch supports the runtime locking correctness debug facility
                                                    ARCH USE QUEUED RWLOCKS # arch supports queued rwlocks
  locking/ queued-rwlocks
  locking/ queued-spinlocks
                                                   ARCH USE QUEUED SPINLOCKS # arch supports queued spinlocks
     perf/ kprobes-event
                                             HAVE REGS AND STACK ACCESS API # arch supports kprobes with perf events
     perf/ perf-regs
                                                             HAVE PERF REGS # arch supports perf events register access
     perf/ perf-stackdump
                                                   HAVE PERF USER STACK DUMP # arch supports perf events stack dumps
                                               ARCH HAS MEMBARRIER SYNC CORE # arch supports core serializing membarrier
    sched/ membarrier-sync-core : TODO
    sched/ numa-balancing
                                               ARCH SUPPORTS NUMA BALANCING # arch supports NUMA balancing
  seccomp/ seccomp-filter
                                                    HAVE ARCH SECCOMP FILTER # arch supports seccomp filters
     time/ arch-tick-broadcast : ok
                                                    ARCH HAS TICK BROADCAST # arch provides tick broadcast()
     time/ clockevents
                                                          !LEGACY TIMER TICK # arch support generic clock events
     time/ context-tracking
                                                      HAVE CONTEXT TRACKING # arch supports context tracking for NO HZ FULL
     time/ irq-time-acct
                                                    HAVE IRO TIME ACCOUNTING # arch supports precise IRO time accounting
     time/ virt-cpuacct
                                                    HAVE VIRT CPU ACCOUNTING # arch supports precise virtual CPU time accounting
       vm/ batch-unmap-tlb-flush: TODO
                                           ARCH WANT BATCHED UNMAP TLB FLUSH # arch supports deferral of TLB flush until multiple pages are unmapped
                                                      ARCH_HAS_ELF_RANDOMIZE # arch randomizes the stack, heap and binary images of ELF binaries
       vm/ ELF-ASLR
                                                        HAVE_ARCH_HUGE_VMAP # arch supports the arch_vmap_pud_supported() and arch_vmap_pmd_supported() VM APIs
       vm/ huge-vmap
                                                          HAVE_IOREMAP_PROT # arch has ioremap_prot()
       vm/ ioremap_prot
       vm/ PG_uncached
                                                      ARCH_USES_PG_UNCACHED # arch supports the PG_uncached page flag
       vm/ pte special
                                                       ARCH_HAS_PTE_SPECIAL # arch supports the pte_special()/pte_mkspecial() VM APIs
       Vm/ THP
                                : ok
                                              HAVE ARCH TRANSPARENT HUGEPAGE # arch supports transparent hugepages
```


RISC-V in the Linux kernel

- KVM support for the Hypervisor spec (Anup Patel/Atish Patra)
 - [PATCH v20 00/17] KVM RISC-V Support
- Vector ISA support based on the draft vector extension (Greentime Hu)
 - [RFC PATCH v8 00/21] riscv: Add vector ISA support

Linux distro: Fedora

(source: <u>Fedora on RISC-V</u>, Wei Fu)

 "This project, informally called <u>Fedora/RISC-V</u>, aims to provide a complete Fedora experience on the RISC-V (RV64GC)"

Linux distro: Fedora

- QEMU and libvirt
 - Fedora images can run on QEMU with graphics
- Real hardware
 - HiFive Unleashed, HiFive Unmatched, and more
- Installation instructions

Linux distro: Debian

- Port of Debian for the RISC-V architecture called <u>riscv64</u>
 - "a port in Debian terminology means to provide the software normally available in the Debian archive (over 20,000 source packages) ready to install and run"
- 95% of packages are built for RISC-V
 - The Debian port uses RV64GC as the hardware baseline and the <u>lp64d ABI</u>

Additional Linux distros

- <u>Ubuntu 21.04</u> supports QEMU and SiFive boards
- OpenSuSE is under development and considered an early preview

Gentoo has riscv64 stages available to download

Arch Linux is in experimental development

OpenEmbedded / Yocto

- <u>meta-riscv</u>: general hardware-specific BSP overlay for RISC-V devices
 - works with different OpenEmbedded/Yocto distributions and layer stacks
 - Supports both <u>QEMU</u> and real boards like <u>SiFive HiFive Unleashed</u>

BuildRoot

- RISC-V port is now <u>supported</u> in the upstream <u>BuildRoot project</u>
- "Embedded Linux from scratch in 45 minutes (on RISC-V)"
 - Tutorial by Michael Opdenacker of Bootlin
 - Use Buildroot to compile OpenSBI, U-Boot, Linux and BusyBox
 - Boot the system in QEMU

SiFive Freedom Unleashed

- The first <u>Linux-capable RISC-V dev board</u>
 - And the board design is Open Source Hardware!
- High performance compared to FPGA
 - FU540 SoC clocked over 10x faster than FPGA 'soft' cores
- Too expensive for widespread adoption
 - Sold for \$999 on <u>CrowdSupply</u> and no longer available
 - FU540 SoC chip is not sold separately
 - SiFive core business is designing cores, not SoC's or boards

SiFive Freedom Unleashed

Fedora GNOME image <u>running on Unleashed</u> with PCIe graphics card

Microchip PolarFire SoC

- Same cores as the SiFive FU540 but adds a FPGA fabric
 - 4x 667 MHz U54 cores, 1x E51 core
 - FPGA with 25k to 460k logic elements (LEs)
 - Supports DDR4 and PCle Gen2
- Full commercial product family
 - Available from distributors
 - From the former Microsemi business unit

Microchip Icicle board

PolarFire SoC dev board

- \$499 on CrowdSuppy
- MPFS250T-FCVG484EES
- o 600 MHz clock RISC-V cores
- 254K logic element FPGA

Memory

2 GB LPDDR4 x 32

8 GB eMMC flash and SD card

Kendryte K210

- 400MHz dual core RV64GC
 - 8MB SRAM and no DRAM interface
- Affordable dev boards
 - Sipeed MAiX BiT is only \$13
- Full support added in <u>Linux 5.8</u>
 - RISC-V NOMMU and M-Mode Linux talk by Damien Le Moal at LPC 20219

Kendryte K210

- <u>Buildroot with busybox</u> for rootfs
 - upstreaming in progress by Damien on buildroot list:
 Add RV64 NOMMU and Canaan K210 SoC support
- Damien Le Moal created a <u>6 DoF robotic arm</u>
- 8MB of RAM runs out very quick!
 - No shared libraries as MMU implements draft spec not supported by Linux
 - Add risc-v support to elf2flt: ELF to bFLT (binary flat) converter for no-mmu Linux targets

SiFive Unmatched

- \$665 on CrowdSupply
 - Shipping from Mouser too
- SiFive Freedom FU740 SoC
 - 4x U74 RV64GC application cores
 - 1x S7 RV64IMAC embedded core

SiFive Unmatched

- Mini-ITX PC form factor
 - 8GB DDR4 RAM
 - o 4x USB 3.2 Gen 1 ports
 - Gigabit Ethernet
 - x16 PCle Gen 3 Expansion Slot
 - M.2 connector for NVMe SSD
 - M.2 connector for WiFi/Bluetooth

Alibaba T-Head XuanTie 910

- <u>T-Head</u> is a subsidiary of Alibaba
- 16-core 2.5 GHz RISC-V processor
 - o <u>implementation</u> of draft Vector extension
 - Performance comparable to Arm Cortex-A73
 - Paper: Xuantie-910: A Commercial Multi-Core 12-Stage
 Pipeline Out-of-Order 64-bit High Performance RISC-V
 Processor with Vector Extension

Android on T-Head C910 SoC

• T-Head has ported Android 10 (AOSP) to RISC-V architecture!

T-Head ICE Evaluation Board

 ICE EVB is a XuanTie C910 based high performance SoC board developed by T-Head

- Dual core T-Head XuanTie C910@1.2GHz
- Extra C910V@1.2GHz core with vector extension, up to 128bit
- DDR4 with speed up to 2400Mbps
- Support GMAC interface
- · Support GPU and 3D
- Display: RGB888 LED, 1080P
- Chip size: 15x15mm
- Process: 28HPC+

T-Head XuanTie C906

RV64GCV, 5-stage, in-order pipeline, up to 1GHz, single-core

Feature	Description					
Architecture	RV64GCV					
Pipeline	5-stages					
T-Head extension	T-Head instruction extension (TIE) T-Head memory attributes extension (TMAE)					
Floating point Unit	Support RISCV Half、F、D instruction extension Support IEEE 754-2008 standard					
Vector Unit	Support RISCV V instruction extension(configurable) vector register width 128bit element size support 8/16/32/64bit support INT8/INT16/INT32/INT64/BFP16/FP16/FP32/FP64					
Bus interface	AXI4.0 128-bit					
Instruction Cache	Up to 64KB (configurable)					
Data Cache	Up to 64KB (configurable)					
Interrupt controller	Flexibly configurable Platform-Level Interrupt Controller (PLIC)					
Memory Management Unit (MMU)	Sv39 virtual memory translation					
Physical Memory Protection (PMP)	Up to 16 regions					
Debug	RV debug					

Allwinner D1 SoC

Allwinner D1 has single T-Head C906 (RV64GCV) core at 1 GHz

全球首颗 塔载平头哥 尺 SC-V 应用处理器

玄铁906 RISC-V CPU

MEMORY

DDR2/DDR3, up to 2 GB SD3.0/eMMC 5.0 SPI Nor/Nand Flash

DSP

32 KB I-cache + 32 KB D-cache 64 KB I-ram + 64 KB D-ram

Video Decoder

4K@30fps H265/H264 MPEG/JPEG/VC1/MJPEG

Display Engine

Allwinner SmartColor2.0, DI, G2D

Video OUT

HDMI, MIPI, LVDS, LCD, CVBS

Video in

CSI, CVBS

Audio

CODEC, I2S/PCM, DMIC

Connectivity

USB2.0, SDIO 3.0, 1000M EMAC

Allwinner Nezha D1 dev board

- Nezha dev board made by AWOL (Allwinner Online) with Allwinner D1
- Starter kit bundle for at \$115 on AliExpress

- Main control: Allwinner D1 C906 RISC-V 1GHz
- DRAM: DDR3 1GB/2GB
- Storage: Onboard 256MB spi-nand, support USB external U disk and SD card to expand storage
- Network: Support Gigabit Ethernet, support 2.4G WiFi and Bluetooth, onboard antenna
- Display: Support MIPI-DSI+TP screen interface, support HDMI output, support SPI screen
- Audio: Microphone daughter board interface * 1, 3.5mm headphone jack * 1 (CTIA)
- Board size: length 85mmwidth 56mmthickness 1.7mm
- PCB layer: 6 layers
- Support Tina Linux, based on Linux 5.4 kernel

RISC-V International developer board program

- <u>RISC-V Developer Boards initiative</u> from RISC-V International to get Linux capable boards into developers' hands!
 - Launched with the Allwinner D1 Nezha board and SiFive Unmatched (limited qty)
- Fill out the <u>RISC-V Developer Boards form</u>
 - Preference is to be RISC-V International member or from a RISC-V International member organization. <u>NOTE: individuals can join RVI free of cost!</u>
 - Explain why you are interested in a RISC-V board and what you plan to do with it
 - For example, adding RISC-V support to an upstream open source software project

Don't overestimate the hardware specs you actually need like RAM

Allwinner D1 open source community

- <u>linux-sunxi</u>: strong open source community for Allwinner SoCs
 - D1 wiki page
 - Allwinner Nezha board wiki page
- <u>Samuel Holland</u> has been working on getting mainline to run
 - SPL: https://github.com/smaeul/sun20i d1 spl
 - OpenSBI: https://github.com/smaeul/opensbi
 - U-Boot 2021.10-rc3: https://github.com/smaeul/u-boot/tree/d1-wip

Linux 5.14-rc4: https://github.com/smaeul/linux/tree/riscv/d1-wip

Fedora on Allwinner Nezha D1 board

- Fedora wiki: <u>Architectures/RISC-V/Allwinner</u>
 - Wei Fu (RISC-V Ambassador and RedHat engineer) has created rawhide XFCE image and produced great documentation of the boot flow and SD card partition layout

Challenges for Allwinner D1 and T-Head C906

- "What's the problem with D1 Linux upstream?" last week at Plumbers
 - Guo Ren (Alibaba T-Head), Liu Shaohua (Allwinner), Wei Fu (Red Hat/Fedora)
 - Slides in Google Slides and PDF, jump to 2h 28 min the live stream recording
 - Peripherals are mostly reused from existing ARM SoC so not much worked needed
 - T-Head C9xx core performance functionality that's not critical to boot upstream:
 - Instructions to accelerate I-cache synchronization
 - Instructions to accelletrate TLB synchronization
 - Vector 0.7.1 draft spec

How to handle non-coherent interconnects?

- T-Head designed C9xx cores in 2019 and there was no spec on how to handle DMA on a RISC-V system with non-coherent interconnects
- non-coherent interconnects can make it possible to have low cost SoC
- However, the <u>RISC-V Privileged spec</u> wrote: "In RISC-V platforms, the
 use of hardware-incoherent regions is discouraged due to software
 complexity, performance, and energy impacts"
- Guo Ren posted [PATCH] riscv: Support non-coherency memory model in 2019 but a RISC-V extension for this was still in an early phase

Page-Based Memory Types (PBMT) extension

- A proposal arose in the <u>RISC-V Virtual Memory Task Group</u>
 - "PBMT" extension proposal to support Page-Based Memory Types (aka "page-based attributes")
- SvPBMT extension is now frozen and in a 45 day public review period

PTE format: T-Head vs. PBMT

• Standard PBMT and D1 custom PTE use the highest bits to determine memory type. But the encoding and semantics are different.

```
Sypbmt PTE format:
         62-61 I
          MT
                    RSW
RISC-V
Encoding &
MemType
           RISC-V Description
00 - PMA
           Normal Cacheable, No change to implied PMA memory type
           Non-cacheable, idempotent, weakly-ordered Main Memory
01 - NC
           Non-cacheable, non-idempotent, strongly-ordered I/O memory
10 - IO
11 - Rsvd
           Reserved for future standard use
```

```
T-HEAD C9xx PTE format:

| 63 | 62 | 61 | 60 | 59-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
SO C B SH RSW D A G U X W R V
A A A A

BIT(63): SO - Strong Order
BIT(62): C - Cacheable
BIT(61): B - Bufferable
BIT(60): SH - Shareable

MT_MASK : [63 - 59]
MT_PMA : C + SH
MT_NC : (none)
MT_IO : SO
```


PTE format: T-Head vs. PBMT

- Guo Ren has posted implementation for standard PBMT:
 - o [PATCH V2 1/2] riscv: Add RISC-V sypbmt extension
- Watch linux-riscv mailing list for further discussion

No hardware? Try Renode!

• Renode can simulate physical hardware systems including CPU, peripherals, sensors, and networking


```
Activities
              Renode ▼
                                                                                     Renode
   bbl loader
                                                  (hifive-unleashed) %bin?=@http://antmicro.com/proje
                                                  .elf-s_17219640-c7e1b920bf81be4062f467d9ecf689dbf7f
               SIFIVE, INC.
                                                  (hifive-unleashed) $fdt?=@http://antmicro.com/proje
                                                  icetree.dtb-s_10532-70cd4fc9f3b4df929eba6e6f22d02e6
         (hifive-unleashed) $vmlinux?=@http://antmicro.com/p
                                                  -vmlinux.elf-s_80421976-46788813c50dc7eb1a1a33c1736
                                                  (hifive-unleashed)
      5555
                                                 (hifive-unleashed) macro reset
              sysbus LoadELF $bin
                                                      sysbus LoadFdt $fdt 0x81000000 "earlyconsole
  5555
 5555 .
5555
                                                     # Load the Linux kernel symbols, as they are
                                55555
 55555
                                                      sysbus LoadSymbolsFrom $vmlinux
              55555555
                               55555
  55555
               55555
                             55555
                                                     # Device tree address is passed as an argumen
   55555
                           55555
                                                     e51 SetRegisterUnsafe 11 0x81000000
     55555
                         55555
       55555
                       55555
                                                (hifive-unleashed) runMacro $reset
        55555
                  55555
                                                (hifive-unleashed) start
         55555
                   55555
                                                Starting emulation...
          55555 55555
                                                (hifive-unleashed)
            555555555
              55555
      SiFive RISC-V Coreplex
0.000000] OF: fdt: Ignoring memory range 0x80000000 - 0x80200000
0.000000] Linux version 4.15.0-00044-g2b0aa1de45f6 (houen@bakura) (gcc version 7.2.0 (GCC)) #5 SMP Wed
0.000000] Zone ranges:
                                   (ptrval) (9593856 bytes)
0.000000]
         DMA32
                 [mem 0x0000000080200000-0x000000008fffffff]
[000000]
         .000000] Movable zone start for each node
.000000] Early memory node ranges
.000000]
       node 0: [mem_gyggggggggggggg
0000001 -
```

How to get involved with RISC-V International?

- Individuals and non-profits can join free of cost
- RISC-V Technical wiki landing page is the single best place to remember
 - Technical Organization charts
 - ISA Extensions On Deck for Freeze Milestone for 2021 ratification
 - RISC-V Technical Working Groups
 - RISC-V extension and feature support

How to get involved with RISC-V International?

- RISC-V Working Groups mailing list server
 - <u>From riscv.org</u>: The work done within RISC-V International is organized on our groups server at <u>lists.riscv.org</u>. This includes mailing lists, file storage, meetings and calendar invitations, and archives, among other things. Groups are organized into a hierarchy by functional area. New groups are proposed and approved through the TSC (technical groups) or the Board of Directors (non-technical groups)"
 - All RISC-V technical committees and work groups are non-confidential list traffic, meeting minutes, and deliverables are <u>public</u>
 - Active participation on lists and meetings is limited to RISC-V members

How to get involved with RISC-V International?

- Many groups have bi-weekly or monthly meetings
- <u>Technical Meetings Calendar</u> (NEW!)
 - o <u>ICS File</u>
 - Google Subscribe Link
 - Note: <u>Tech Groups Calendar</u> is OLD and not used anymore

September Sun	2021 ▼ Mon	Tue	Wed	Thu	Fri	Print Week Month
Sull) 1de			2	3
	8am tech-config meeting	9am Fast Interrupts TG Meeting		7:05am RISC-V Security HC 10am RISC-V Cryptographic Extens 10am RISC-V: Graphics SIG	ions wed	
	5	6 7		8	9	10
	7am psABI TG 8am Platform HSC Bi-Weekly Meeting	6am RISC-V Development Partners 7am RISC-V Labs - Colocation / CI / Testing 9am Security Technologies SIG	6am RISC V DataCenter SIG 8am Platform HSC Bi-Weekly Meeting	7am Bi-Weekly RISC-V Dev Boards 8am Arch Compat. Test SIG SemilM 9am RISC-V Advanced Interrupt Cot 10am RISC-V Cryptographic Extens	onthly M ntroller N	
	12 1			15	16	17
	7am Toolchain & Runtime TS Bi-Weekly M 8am tech-config meeting 9am CMO TG Meeting	ex Bam TEE TG Weekly 9am Debug Task Group call 9am Fast Interrupts TG Meeting	10am Virtual Memory TG Meeting	7am RISC-V SIG-HPC monthly mee 7:05am RISC-V Security HC meetin, 8am RiscV Embedded SIG Monthly 10am RISC-V Cryptographic Extens 10am RISC-V: Graphics SIG	g Meeting	
	19 2	0 21		22	23	24
	8am Platform HSC Bi-Weekly Meeting 9am J Extension Meeting	6am RISC-V Development Partners 7am RISC-V Labs - Colocation / CI / Testing 8am TEE TG Weekly 9am Security Technologies SIG	3	7am Bi-Weekly RISC-V Dev Boards 8am Arch. Compat. Test SIG SemiM 10am RISC-V Cryptographic Extens	onthly N	
	26 2			29	30	et 1
	7am Toolchain & Runtime TS Bi-Weekly M 8am tech-config meeting	et Bam Processor Trace Call Bam TEE TG Weekly 9am Fast Interrupts TG Meeting	10am Virtual Memory TG Meeting	7:05am RISC-V Security HC 9:05am Software Horizontal Commit 10am RISC-V Cryptographic Extens 10am RISC-V: Graphics SIG		
	c Time - Los Angeles					+ Google

Cache Management Operations (CMO) TG

- Important for SoC's that lack cache coherent interconnects
- <u>Zicmobase extension</u> adds a base set of instructions and CSRs to handle Cache Block operations like invalidate, clean and flush
- Now frozen and under 45 day public review
- What about existing SoCs?
 - o It is possible trap and emulate these new instructions in SBI once frozen
- Mailing list: <u>tech-cmo</u>, next task group meeting: <u>Oct 11</u>

Advanced Interrupt Architecture SIG

- RISC-V Advanced Interrupt Architecture (AIA)
 - APLIC: Advanced Platform-Level Interrupt Controller
 - IMSIC: Incoming Message-Signaled Interrupt Controller
 - o Mailing list: tech-aia
- ACLINT (Advanced Core Local Interruptor)
 - Backwards compatible with the SiFive CLINT but restructured as 3 devices: MTIMER
 (M-mode timer), MSWI (M-mode software interrupts), SSWI (S-mode software interrupts)

Discussion of ACLINT occurs on the <u>RISC-V Unix Platform Mailing list</u>

Advanced Interrupt Architecture SIG

- Next Generation RISC-V Interrupt Support talk by Anup Patel
 - Last week at Plumbers: <u>live stream recording</u>

AIA & ACLINT for OS-A platforms

Possible uses of AIA and ACLINT in OS-A platforms

RISC-V AIA Specification RISC-V ACLIN		-V ACLINT S	RISC-V SBI Specification			RIS	RISC-V Privilege Specification					
OS-A Platforms M-leve	MSIs			Wired Interrupts		IPIs		Timer				
	M-level	S-level	VS-level	M-level	S-level	VS-level	M-level	S-level	VS-level	M-level	S-level	VS-level
Legacy Wired IRQs	NA	NA	NA	PLIC	PLIC	PLIC (Emulate)	MSWI (CLINT) Phase1	SBI IPI	SBI IPI	MTIMER (CLINT) Phase1	SBI Timer	SBI Time
Only Wired IRQs	NA	NA	NA	APLIC M-level Phase1	APLIC S-level Phase1	APLIC S-level (Emulate) Phase2	MSWI Phase1	SSWI Phase1	SBI IPI	MTIMER Phase1	Priv Sstc In-progress	Priv Sstc In-progress
MSIs and Wired IRQs	IMSIC M-file Phase1	IMSIC S-file Phase1	IMSIC S-file (Emulate) Phase2	APLIC M-level Phase1	APLIC S-level Phase1	APLIC S-level (Emulate) Phase2	IMSIC M-file Phase1	IMSIC S-file Phase1	SBI IPI	MTIMER Phase1	Priv Sstc In-progress	Priv Ssto
MSIs, Virtual MSIs and Wired IRQs	IMSIC M-file Phase1	IMSIC S-file Phase1	IMSIC VS-file Phase2	APLIC M-level Phase1	APLIC S-level Phase1	APLIC S-level (Emulate) Phase2	IMSIC M-file Phase1	IMSIC S-file Phase1	IMSIC VS-file Phase2	MTIMER Phase1	Priv Sstc In-progress	Priv Ssto

- Platform horizontal steering committee (HSC)
 - standardize the interface between hardware platforms and OS like Linux
 - o <u>agenda and minutes on wiki</u> for bi-weekly meetings chaired by Kumar Sankaran
 - Recordings for past meetings <u>available in Google Drive</u>
 - <u>Slides</u> from past meetings are online
 - Mailing list: <u>tech-unixplatformspec</u>

- OS-A Platform: to run full OS like Linux, BSD, Windows
 - o RVA22U <u>profile</u> for user-mode.
 - RVA22S <u>profile</u> for supervisor-mode.
 - o RVM20M64 profile for machine-mode.
 - Must comply with <u>Embedded Base Boot Requirements (EBBR) Specification</u>
 - Optional server extension mandates additional requirements like ACPI
 - M Platform: to run bare-metal applications or RTOS on microcontroller

Session in RISC-V microconference at Linux Plumbers Conference

ACPI for RISC-V at Linux Plumbers Conference

Proof of Concept

QEMU

- ACPI Tables RSDP, XSDT, FADT, DSDT, MADT, RTDT, MCFG
- MADT:
 - Per-hart INTC
 - IMSIC
 - Per-socket APLIC
- DSDT:
 - Processors
 - APLIC with _MAT
 - Generic 16550a UART(PNP0501) with _DSD method
 - Virtio

EDK2

- Integrated OpenSBI with AIA support
- ACPI enablement (AcpiTableDxe, QemuFwCfg)
- SMBIOS enablement

Linux

- Basic ACPI enablement for RISC-V (ACPICA and ARCH specific ACPI)
- ACPI based timer driver (RTDT)
- ACPI based INTC Driver
- ACPI based IMSIC driver
- ACPI based APLIC driver
- AOT I DUSCU AI LIO UIT
- SMBIOS enablement
- Hart capabilities using SMBIOS table 44

RISC-V at Linux Plumbers Conference

- <u>Live stream on YouTube</u>, <u>Detailed notes with links</u>
 - Sessions
 - The RISC-V platform specification
 - ACPI for RISC-V
 - What's the problem with D1 Linux upstream?
 - Puzzle for RISC-V ifunc
 - Towards continuous improvement of code-generation for RISC-V

