
秘 Copyright 2012, Toshiba Corporation.

Evaluation of Flash
Filesystems Update

SFTL and BENAND

Toshiba Corporation

UWATOKO Katsuki

2012/9/20

 2

Contents

SFTL (Simple Flash Translation Layer) NAND Driver

BENAND (Built-In ECC NAND)

fastmap of UBI

 3

Background

Boot Sequence of our target.

 load the boot image from NAND to RAM

 mount the image on RAM with SQUASHFS

The reasons are:

it is faster boot than direct mount in our target.

it reduces the number of NAND read times and make it predictable for reliability.

 mount some parts of the boot image directly.

mounted with ubi/ubifs

loaded to RAM and mounted with SquashFS

mounted directly

read/write data area

Boot Image area
almost read-only

The Target in this presentation NAND

 4

Background

Requirements of NAND Driver for our target

 Quick initialization for fast boot

 Bad Block Management

 wear-leveling and scrubbing

but GOOD wear-leveling is not necessary, because it is read-only except for
update and the frequency of read is low.

 Block Device interface for a direct mount

Other Drivers and status (when we started to develop SFTL)

mtdblock

has no bad block management.

sm_ftl/ssfdc

These are for SmartMedia™. Therefore there are some limitations of Media Size,
Zone wear-leveling etc.

ubi + (ubifs or gluebi or ubiblk)

The initialization time of ubi was not match for our target because it was slow. But
now it provides “fastmap” which reduces the time. We are considering using this.

 5

Features of SFTL

SFTL (Simple Flash Translation Layer)

Block Device Interface (using MTD block dev in MTD)

Provides wear-leveling and Scrubbing

 no static wear-leveling

One erase block size cache

 Sequential access is fast, even if a size of request is not Block size.

uses 6 bytes in OOB for a logical address, status, version.

Erases a erase block just before a write

 for maintenance

 easy to analyze after boot issue.

We sent the patch to Linux MTD ML at Dec. 2012.

The maintainer suggested that:

 Using OOB for status/data, not only for bad block status, is a bad idea

 nowadays. we have to re-design this.

 6

Software Structure

Block Device IF

UBIFS

SFTL

NAND Chip

NAND Controller in SoC

MTD (Memory Technology Device)

UBI (Wear-Leveling)

MTD Block

gluebi
ubiblk

MTD block dev

Linux
Kernel

HW

MTD Block smftl/
ssfdc

MTD block dev

Block Device IF

Targets for a performance measurement in this presentation

 7

BENAND (Built-In ECC NAND)

Raw NAND Chip

ECC Control

SW ECC

Read/Write/
Erase

• S SFTL/UBI (Wear-leveling)

MTD (Memory Technology Device)

SoC NANDC
Driver

ECC
Cntrl

BENAND™

ECC Control

SW ECC

Read/Write/
Erase

• S SFTL/UBI (Wear-leveling)

MTD (Memory Technology Device)

SoC NANDC
Driver

ECC
Cntrl

BENAND
ECC

HW Block

SW Block

 8

BENAND (Built-In ECC NAND)

Easy to port BENAND support to MTD NAND

 add ECC layout for BENAND

 add a check routine of ECC status after read.

We have a plan to send the patch to Linux MTD ML.

 drivers/mtd/nand/nand_base.c | 73 +++
 include/linux/mtd/nand.h | 3 +
 2 files changed, 75 insertions(+), 1 deletion(-)

 9

Environment

CPU Cortex-A9 528Mhz, SMP (3 core)

NAND Controller w/ HW ECC, w/o DMA

Kernel Linux 3.0.32-ltsi
 ubiblk v0.9 9/26/2011

 fastmap RFCv5 5/17/2012

 sftl 12/14/2011

mtd-utils 1.3.1

gcc 4.5.1

NAND

 BENAND
(TC58BVG2S0FTA00)

NORMAL NAND
(TC58NVG1S3ETA00)

Media Size 512MB 256MB

Block Size 256KB 128KB

Page Size 4096B + 128B 2048B + 64B

 10

Basic NAND Performance (Erase/Read/Write)

0

1

2

3

4

5

6

BENAND (256MB) NORMAL NAND
(256MB)

2.51

3.96

2.52

5.34

s
e
c

Erase (flash_erase command)

epmty

full

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

BENAND bs=256k NORMAL NAND
bs=128k

7.51 7.54

M
B

/s
e
c

Read (dd from /dev/mtd to /dev/null)

0.00

1.00

2.00

3.00

4.00

5.00

BENAND bs=256k NORMAL NAND
bs=128k

3.15
2.73

M
B

/s
e
c

Write (dd from /dev/zero to /dev/mtd)

The erase/write performance of
BENAND is better than NORMAL.
The result is considered that it is
because of the difference of
BLOCK size.

 11

Performance on our target’s boot sequence

The following graph is the result of our target’s boot sequence example.

 128MB MTD Partition.

 read 64MB compressed file (squashfs image) to RAM.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

SFTL ubiblk gluebi UBIFS SFTL ubiblk gluebi UBIFS

NORMAL NAND BENAND

9.04
8.87 9.44

10.33

9.14
9.03 9.47

11.53

9.10
9.43

10.00
11.10

9.27
9.59

10.04

12.38

s
e
c
 read

mount

init

 12

Read/Write Performance – tiobench -

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

SFTL gluebi UBIFS SFTL gluebi UBIFS

NORMAL NAND BENAND

M
B

/s
e
c

Seq Write

Random Write

Seq Read

Random Read

options: unit size 4KB (-b), one thread (-t), writing synchronously (-S)
 drop cahe between each tests (modified the source)
 ubifs mount with compr=“none” option to avoid an influence of contents.

The performance of sequential read/write of SFTL are good. But the performance
random is not good, especially random read. Because SFTL has just one erase block
buffer for read/write.

 13

Available Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

32MB 64MB 128MB 256MB 512MB

NAND Size - 32.00 64.00 128.00 256.00 512.00

SFTL NORMAL NAND 31.38 62.75 125.50 251.00 0.00

SFTL BENAND 30.75 62.75 125.50 251.00 502.00

gluebi NORMAL NAND 30.27 60.91 122.31 245.09 0.00

gluebi BENAND 29.55 60.55 121.82 244.12 489.74

UBIFS NORMAL NAND 27.05 56.09 114.30 230.56 0.00

UBIFS BENAND 24.98 55.00 114.09 231.78 468.38

M
B

NAND Size -

SFTL NORMAL NAND

SFTL BENAND

gluebi NORMAL NAND

gluebi BENAND

UBIFS NORMAL NAND

UBIFS BENAND

These are just for reference data, because these depend on parameters of reserved
block number for bad block, etc. But in the case of a small partition, especially using a
large page NAND, we have to be careful the size.

A size of writing compressed data until filesystem full.

 14

UBI fastmap

0.00

0.50

1.00

1.50

2.00

2.50

32MB 64MB 128MB 256MB 512MB

s
e
c

MTD Partition Size

ubiattach time - fastmap vs !fastmap -

NORMAL UBI NORMAL NAND

NORMAL UBI BENAND

Fastmap UBI NORMAL NAND

Fastmap UBI BENAND

!fastmap
depends on the size of partition

fastmap

 15

Conclusion

SFTL

 SFTL has good performance to our target so far. But we have to reconsider
the implement to merge Linux main line.

BENAND

 it’s easy to port BENAND to MTD NAND.

 The performance is almost same as NORMAL NAND. In this presentation, the
result is assumed to depend on the ERASE Block size, not BENAND.

UBI fastmap

 ubiattach time is very fast. We are considering to adopt this, and keep on
evaluating it.

