
Stafford Horne

1 to many OpenRISC SMP

Agenda
Introduction

Implementing SMP

Introduction

What is OpenRISC?

FPGA, IP cores

OpenCores

FuseSOC

FOSSi

What is OpenRISC?
Officially OpenRISC 1000 is an open

source RISC architecture:

● 32-bit / 64-bit

● 32 General Purpose Registers

● Delay Slot

● Instruction & Data MMU

● Linux support since 2010

○ 50mhz, 5 secs

Read More: https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.2-rev0.pdf

https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.2-rev0.pdf

OpenRISC vs Other soft codes

Open MMU Arch Linux Silicon

OpenRISC 32-bit Limited

RISC-V Kinda 64-bit 4.15 Multi

Nios2 32-bit

Microblaze 32-bit

Upstream Progress
Last update in 2016 many projects were pending to go upstream

● GDB - code ok’ed pending one Copyright assignment, ETA Today

● Linux - Performance, SMP Complete

● newlib - Complete

Progress

● Qemu - Bug fixes + SMP support

● Uclibc-ng - NPTL support

● musl - no changes

Toolchain GCC
github.com/openrisc/or1k-gcc

● 5.4.0 released (2017 Feb)

Upstream status - behind

● 8 - development (target 2018 Q1)

● 7.2 - latest 7 release (2017 Aug)

● 6.4 - latest 6 release (2016 Jul)

● 5.5 - latest 5 release (2017 Oct)

SMP

Goals
● Create a simple/low cost SMP architecture

● Learn a lot

Architecture Specification
Unique

● Interrupts are routed to

every core

● Each core has a 32-bit

maskable PIC

● Open Multi-core

Programmable Interrupt

Controller provides only IPI

Memory Barriers
● Strong vs Weak memory

model

● Memory Sync Points

● Cache Coherency

● Transitivity

OpenRISC cache snoop and

atomic operations provide this.

https://www.kernel.org/doc/Documentation/memory-barriers.txt

https://www.kernel.org/doc/Documentation/memory-barriers.txt

Atomics & Spinlocks
Atomic Instructions added to

support multi-core.

Peter Zijlstra recommended

switching to qspinlocks and

qrwlocks. Very Easy

qspinlocks and qrwlocks

atomic pair

Per CPU
Provide cache aligned

structure access

Timer Sync
Ensure each core has synchronized tick

timers

Case event is handled by core 0 then later

by core 1

● You don't want to go back in time

● You don't want to go into the future

CPUs must sync timer when brought

online.

Core 1 - syncs with core 0

Lockdep and Frame Pointers
Lockdep validates locking by ensuring

interrupts are on/off when locks are

taken.

Requires annotating low level IRQ

changes and a reliable frame unwinder.

trace_hardirqs_off - when the system turns IRQ off

trace_hardirqs_on - when the system turns IRQ on

https://lwn.net/Articles/321663/

Disabling Interrupts

Re-enabling Interrupts

https://lwn.net/Articles/321663/

Patch Series

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/arch/openrisc?h=v4.15-rc1

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/arch/openrisc?h=v4.15-rc1

ありがとう
thank you

On the web
me

shorne@gmail.com stffrdhrn.github.io @stffrdhrn

OpenRISC

github.com/openrisc - projects hosted here

#openrisc on freenode (I’m shorne)

openrisc@lists.librecores.org

openrisc.io

Questions
?

