

Link time dead code and data
elimination using GNU toolchain

Denys Vlasenko

 CELF Embedded Linux Conference 2010

It makes sense to run the same software on embedded devices
as we run on desktops (for example, Linux kernel),
in order to leverage an enormous investment of talent, time and
in some cases, money, which went into creating and improving it.

However, embedded devices are generally more resource-constrained
than desktops or servers. To make the software more suited
for embedded use, it needs to be put on a diet.

This talk will show you how to eliminate one of the typical
sources of code bloat - public functions which are not reachable
through other modules of the program. On typical programs, this
technique eliminates up to 10% of code/data.

 CELF Embedded Linux Conference 2010

A detour: an admin plays with old, unused server...

● It couldn't boot Linux - problem recognizing a SCSI disk controller.
Added the PCI ID for the controller to aic7xxx driver.
Bingo! It works... but why this driver is ~300 kb of code?

● What good geek should do?
 Investigate it!
 The driver has a lot of debugging code controlled by a CONFIG option.

The code is always compiled, it is just never called if option is off...
● What good geek should do?

 Fix it!
 It took five days to refactor the code and stop it from being linked in if

option is off. 100K of code is shaved off.
● What good geek should do?

 Submit it!
 It took three YEARS to push the fix to mainline kernel.

(admittedly, the admin was not focusing on the effort, but still...)

 CELF Embedded Linux Conference 2010

This does not scale!

Humans should not do optimizations by hand if machine can do it!

● Why was the code not dropped by compiler/linker?
 ELF object module (.o file) consists of blocks called sections.
 Compiler puts all executable code produced by compiling C code into

section called .text, r/o data into section called .rodata, r/w data
into .data, and uninitialized data into .bss. Example:

module1.c
int f(void) { return 0; }
void unused_func(void) { a_lot_of_code; }
main.c
int main(int argc, char **argv) { return f(); }

 module1.o: section .text contains code of both f() and unused_func()
 main.o: section .text contains code of main()
 module1.o (and a lot of other .o files) is put into a lib.a
 we are creating executable: gcc -o executable_name main.o lib.a

 CELF Embedded Linux Conference 2010

Welcome to the 1970s

● How exactly executable is created?
 Linker sees that main.o has an undefined reference to label f.
 Linker scans lib.a and finds that module1.o has this label defined.
 Linker adds all sections from it, including entire .text section from

module1.o, to the executable.
 Therefore unused_func() body is included too.

● WHY???
 Linker has no way of eliminating unused_func() code because it is no

longer known which part of .text section in module1.o corresponds to
which function. It is only known where f() function starts inside it, but
as far as linker is concerned, f() may jump around entire .text section.
Linker has to include entire .text section, or risk losing parts of f()
body!

 This is how linking works in Unix since the beginning.

Come on, Turbo Pascal twenty years ago did better than this!

lib.a

main.o

.text

relocation: f

module1.o

f starts here

.text
unused_func starts here

module2.o

relocations...

Typical Unix linking

 CELF Embedded Linux Conference 2010

Houston, we have a problem!

● Is there a solution?
 Yes! Put every function to its own small section!
 gcc -ffunction-sections -fdata-sections does it.

f() code goes to .text.f section, unused_func() goes to
.text.unused_func section, and so on.

 Now linker can distinguish between bodies of different functions.

● Are we done?
 No, linker will still combine all .text.* sections from selected modules

into one .text section in the executable - including .text.unused_func.

● How to tell linker to drop unused sections?
 ld --gc-sections (if you invoke ld from gcc, use gcc -Wl,--gc-sections).

With this option, ld will not pull in all sections from an .o file, it will
pull only those which are needed to resolve a symbol.
(this is not exactly how it works... we will return to this later)

lib.a

main.o

.text.main

relocation: f

module1.o

.text.f
f starts here

.text.unused_func
unused_func starts here

module2.o

relocations...

Linking with -ffunction-sections --gc-sections

 CELF Embedded Linux Conference 2010

Pitfalls?
● Things will break if the program uses special sections which are meant to

be pulled into the program when other parts of .o files are pulled in, even
if these “magic” sections themselves are not referenced.

● Example (http://sources.redhat.com/bugzilla/show_bug.cgi?id=3400):

#include <stdio.h>
int main() {
 printf("Hello world\n");
}

This program uses stdio functions and data (through printf() function).
When it is linked via "gcc -Wl,--gc-sections -static", sections containing
them are included, but a section named __libc_atexit from genops.o file,
which holds a pointer to _IO_cleanup() function, is not referenced by any
of them and is not included, even though other parts of genops.o are.

As a result, atexit function responsible for flushing stdout won't be called
on exit, and “hello | cat” command will output nothing.

fileops.o

.text

relocation

genops.o

.text
code

__libc_atexit
pointer to _IO_cleanup

Magic sections: glibc example

 CELF Embedded Linux Conference 2010

How to fix “magic section” problem?

● In many cases, it can't be fixed. You must not link statically against
libraries which use “magic section” technique, and must not use it
yourself.

● Bad news: even glibc is using it.
But linking statically against glibc is not a good idea for a half dozen
other reasons anyway...

● Good news: dynamic linking is not affected!

● Maybe we can invent a new section property and mark “magic sections”
with it, and teach linker to not drop such sections (IIRC, no such attribute
exists as of now. Today it can only be done via custom linker script).

● The best, but hardest way, is to get rid of “magic sections”. One method
is to add references to them from sections which need their presence.

 CELF Embedded Linux Conference 2010

“Magic sections” in Linux kernel

● Linux kernel: we can still use “magic sections”, but kernel linker scripts
have to be fixed.

● Wait a sec, what is “linker script”? (put your propeller hat on)
Linker essentially takes input sections, possibly drops some of them, then puts the rest into
output file. Linker can merge several input sections into one output section. GNU ld
determines which sections to drop, join, or copy without joining, and in what order, by
looking in a “linker script”. Usually it uses built-in one, but with option -T you can use your
own. Linux kernel does that.

● This linker script fragment says to combine sections named
.text[.anything] and .smp_locks into output section .text:
.text: { *(.text) *(.text.*) *(.smp_locks) }

● The fix is to let linker know that some sections are “magic” and must
never be dropped using KEEP directive:
.text: { *(.text) *(.text.*) KEEP(*(.smp_locks)) }

Note: I lied! ld --gc-sections does not collect only needed sections. It collects all sections
from needed .o files, just as it was doing for last 30 years. But before combining them into
output file, it drops those sections which are not reachable from “seed” sections.

main.o

.text

relocation

module1.o

.text
code

.smp_locks

pointer to LOCK insn
pointer to LOCK insn

pointer to LOCK insn

Magic sections: kernel example

 CELF Embedded Linux Conference 2010

How much do we save?

● Busybox (current git, statically linked against uclibc)
 text data bss dec hex filename
 823890 459 7364 831713 cb0e1 busybox
 816186 443 7256 823885 c924d busybox.gc
 823305 456 7308 831069 cae5d busybox.fs
 813999 440 7208 821647 c898f busybox.fsgc -1.21%

● GDB (6.3, dynamically linked against glibc)
 text data bss dec hex filename
1930262 38924 105704 2074890 1fa90a gdb
1930205 38920 105680 2074805 1fa8b5 gdb.gc
1930522 38924 105704 2075150 1faa0e gdb.fs
1872341 38868 88112 1999321 1e81d9 gdb.fsgc -3.64%

 CELF Embedded Linux Conference 2010

How much do we save? (cont.)

● Kernel (linux-2.6.33-rc6 monolithic x86-64)
 text data bss dec hex filename
15551696 1900592 896916 18349204 117fc94 vmlinux
15547165 1900592 831380 18279137 116eae1 vmlinux.gc
14408101 1869506 890061 17167668 105f534 vmlinux.fs
14079197 1813040 827812 16720049 ff20b1 vmlinux.fsgc -8.87%

● Kernel (linux-2.6.33-rc6 allyesconfig sans debugging, x86-64)
 text data bss dec hex filename
59145131 6103031 19789800 85037962 511938a vmlinux
56899756 6051191 19724264 82675211 4ed860b vmlinux.gc
56299799 6022456 19756228 82078483 4e46b13 vmlinux.fs
52875500 5190455 19701868 77767823 4a2a48f vmlinux.fsgc -8.54%

 CELF Embedded Linux Conference 2010

Pushing patches to mainline kernel

● Problem #1: kernel's modpost tool gets confused by 64k+ sections.
 Easy to fix. The patch is in -mm: http://lkml.org/lkml/2010/1/14/573

● Problem #2: kernel already uses sections named .text.foo for unrelated
purposes.
 Relatively easy to fix by renaming sections. The patch is in kbuild-git

already and hopefully will be in mainline:
http://lkml.org/lkml/2010/3/8/148

● Problem #3: kernel has magic sections.
 Easy fix: add KEEP() directives to kernel's linker scripts where they

mention these sections.
 Drawback: this defeats garbage collection logic, dead code which is

referenced by magic sections will not be eliminated.
 More complex, but better performing fix: add dummy references to

magic sections from the places they reference.
 The patch is ready, but want to have #1,#2 accepted into mainline

first.

http://lkml.org/lkml/2010/3/8/148

 CELF Embedded Linux Conference 2010

Conclusion

● Compile your modules with -ffunction-sections -fdata-sections – there are
no downsides to it!

 This includes static libraries, not just binaries – make it possible for
users of your library to benefit from more efficient dead code
removal.

● Link your binaries with --gc-sections, unless you have to link against
nasty third-party static library which uses magic sections.

 CELF Embedded Linux Conference 2010

Your questions please.

does it work only on Intel?
why it does not work so well with kernel modules?

what CONFIG option will control it?
is this useful for something else than reducing size?

any adverse effects?
how to add references to “magic sections” so that they work with --gc-sections?

