SURVIVING IN THE WILDERNESS
INTEGRITY PROTECTION AND SYSTEM UPDATE

Patrick Ohly, Intel Open Source Technology Center

Preliminary version




MOTIVATION FOR THE TALK

 Why bother?
Why yet another talk?

 What's my background?




PERSONAL BACKGROUND

Security and update in Ostro™ OS
meta-intel-iot-security/meta-integrity: IMA
meta-swupd: Clear Linux* update mechanism

Supporting an update mechanism in the Yocto Project?
Comparison in the Yocto Wiki.

Integrating dm-verity and whole-disk encryption into loT OS
Reference Kit for Intel® Architecture

* other names and brands may be claimed as the property of others




WHY BOTHER?

* Surviving...

Harden before shipping.

Update once deployed to fix new vulnerabilities.

e ...inthe wilderness

* Hostile environment: unauthorized users may be able to access, modify
and boot a device.

* Integrity protection must ensure that a device only runs unmodified
software, in an unmodified configuration.




CONTENT OF THE TALK

« Taxonomy of update mechanisms

* Interaction between system update and integrity protection

 Hands-on part with loT Refkit




intel.

TAXONOMY OF UPDATE MECHANISMS




CANDIDATES COMPARED FOR YOCTO

swupd
e OSTree

* swupdate

* mender.io



https://wiki.yoctoproject.org/wiki/System_Update

KEY CRITERIA

Block based vs. file based
* Partition layout

* Integration with boot process

* Integration with update server for over-the-air (OTA) updates




BLOCK V3. FILE UPDATE

* Block based: update partitions (swupdate, mender.io)
 Reboot required
» Partition size fixed
* Rewrite entire partitions
* File based: update individual files and directories (swupd, OSTree)
* Reboot may be optional (swupd)

« Same update stream can be applied to devices with different disk sizes

* Very efficient




intel)
PARTITION LAYOUT

« A/B setup: “live"” partition and second partition that gets updated
* mender.io relies on this
* Supported by swupdate
 Could be done with OSTree and swupd
* Single partition
* Supported by swupdate
* Default mode of operation for OSTree and swupd

« Updating content outside of the rootfs partition?




INTEGRATION WITH BOOT PROCESS

e Choose what to boot into
e OSTree bind-mounts actual rootfs
 mender.io and swupdate set u-boot variables

e Rescue mode

* swupdate has recipe for fallback initramfs




INTEGRATION WITH UPDATE SERVER

* Clients pull anonymously, need additional telemetry
« OSTree
 swupd

 Dedicated update server

 mender.io, including hosted service

« swupdate supports hawkbit




el biiiiy
iy
¥000000

Ly
biLy
000

INTEGRITY PROTECTION




intel)
AALIBLEOPTON =

Linux Integrity Measurement Architecture (IMA) with Extended
Verification Module (EVM)

 Whole-disk encryption with per-machine secret key

* dm-verity




IMAJEVM

Originally designed for remote attestation based on measurements
Extended to enforce locally the integrity of file content (IMA) and attributes (EVM)
EVM tied to per-machine key

Changes file system semantic:

Data and xattr must match to make file usable, but get flushed independently (breaks sqlite, increases risk in
case of power loss).

Does not protect integrity of directory content and therefore susceptible to offline attacks:

Disable services by removing files

Replace trusted content with symlinks to untrusted content




WHULE DISK ENCRYPTION

Integrity protection a side effect:
attacker cannot modify files without knowing the secret key

« Offline modifications result in scrambled blocks, which may or may
not be detected by the filesystem

« Key (punintended) problem: creating and securing a per-machine
encryption key




intel)
DM-VERITY

Originally designed for Chrome OS, also supported by Android

» Verifies integrity of each block in a read-only partition, modifications
immediately lead to read error

* Boot process must verify integrity of short root hash

* Partition also usable without dm-verity




COMPATIBILITY BETWEEN UPDATE AND INTEGRITY

IMA/EVM v v
Encryption v v v v
dm-verity v v

 EVM needs per-machine key and writable rootfs, not compatible
with block-based update

* swupd and OSTree need writable rootfs, not compatible with dm-
verity




—@tﬂ'

CASESTUDY

dm-verity and LUKS+TPM in IoT Reference OS Kit




ARCHITECTURE

 flash « VFAT partition « ext4, optionally
. kernel + with encryption
initramfs + or dm-verity
systemd-boot
EFl stub +

boot parameters




TARGET MACHINE

e gemu
* swtpm + gemu-tpm patches
e MACHINE=Iintel-corei7-64

 TianoCore/ovmf as firmware

* Fictional device with custom keys enrolled




SYSTEM COMPONENTS: INSTALLER IMAGE

« Contains whole-disk images as input

Production image free of installer components
* 1image-installer script
* genericpartin image-installer.bbclass

« refkitpartin refkit-installer-image.bb

Installation: partition target disk, optional: set up whole-disk encryption with new key in TPM
NVRAM, copy files

Built with wic and new dm-verity.py source plugin which creates partition with hash data




SYSTEM COMPONENTS: INITRAMES

e Basedon initramfs-framework (OE-core)

* New:
* initramfs-framework-refkit-dm-verity

e initramfs-framework-refkit-luks

* Same refkit-initramfs forall images,
parameterized with per-image boot parameters




intel)
HOWTO

TODO: adding layers, reconfiguring distro, building

DEMO: initializing TPM, starting swtpm, booting installer image, booting
installed image, updating that image with swupd




UPENS

Integration of UEFI signing
« A/B partition setup with swupd and/or OSTree

o Stateless rootfs

« Editing boot parameters or at least automatically adapting them to
the current machine (serial port)




intel.

QUESTIONS?

000000

biiy
kLY
0000




LINKS

TODO




