

Lessons Learned from Linux on an
FPGA

Grant Likely
Secret Lab Technologies Ltd.

Embedded Linux Conference
April 16, 2008

Typical SoC

DDR2
RAM

Run of the mill SoC

PPC405
CPU core

DDR2
controller

Ethernet PHY

RS232
transceiver

Ethernet
MAC

UART

GPIO

P
LB

 B
us External

Bus

O
P

B
 B

us

Bridge

Interrupt
Controller

Super dooper
magic profit

device

FPGA System

DDR2
RAM

FPGA

Ethernet PHY

RS232
transceiver

Interface for
super dooper
magic profit

device

Virtex 4FX FPGA System

DDR2
RAM

FPGA with higher cool factor

PPC405
CPU core

Ethernet PHY

RS232
transceiver

Interface for
super dooper
magic profit

device

Ethernet
MACPPC405

CPU cores

Ethernet
MACEthernet

MACEthernet
MAC

Virtex FPGA Linux Support

● Basic support for PowerPC in mainline
– Serial ports

– ML300/403 Framebuffer

– SystemACE device

● Extra drivers in Xilinx public git tree
– Ethernet devices, DMA, I2C, GPIO

– Microblaze support

– Currently merged with v2.6.24-rc8

– Rewrite needed before mainline

Lesson Learned: Don't make
developers lives hard

● Hardware Engineers don't like to compile
kernels

● Software Engineers don't like to synthesis
bitstreams

● Nobody likes to compile user space.
● Device Tree is your friend.

Lesson Learned: Get your drivers
into mainline

● Andrew talked about this this morning

Lesson Learned: Get your drivers
into mainline

● Andrew talked about this this morning
● You're not doing anything that novel anyway

Lesson Learned: Get your drivers
into mainline

● Andrew talked about this this morning
● You're not doing anything that novel anyway
● No; you're really not

Lesson Learned: Get your drivers
into mainline

● Andrew talked about this this morning
● You're not doing anything that novel anyway
● No; you're really not
● I mean it -- others have fought with what you're

fighting with before; someone else will have
some advice

Lesson Learned: Hardware is the
new Software

● Should follow software best practices
● Revision Control
● Automated builds
● Peer review

– Let the SW folks look at the HW design!!! (and visa
versa)

Lesson Learned: It really might be a
hardware bug

● Talk to your hardware engineer immediately
when you have problems

● They can probe any signal inside the FPGA
design

Lesson Learned: It's easy to spend
all your budget on “boring” stuff

● PCI, USB, ETH, Serial
● Matt Mackall, “If your vendor isn't pushing stuff

to mainline, go beat them up”
● You've got better things to do

– Like the custom application logic you're putting in
the FPGA

– Otherwise you'd probably use an SoC

– Start the design chosing platforms that already work
well.

● Cypress c67x00 driver example

Lesson Learend: Make things Work
first...

● ...before you make them fast/small/clever
● Get a stable baseline so that you know when

things break
● Things break frequently, so be setup to know
when things break

Lesson Learned: Prepare for
dynamic hardware in the kernel

● Expect things to change; they will anyway
● This happens for SoCs to; just at a much lower

turnaround rate

Lesson Learned: All of your
assumptions are wrong

● Customizable peripherals, don't make
assumptions about configuration.

● Design your code to be prepared for changes to
functionality

● ie. Xilinx DMA
● But be realistic too. You can't design for

something that doesn't exist; but you can
design your code for things that are likely to
change.

● Avoid hardcoding

Lesson Learned: User Space Sucks

● It's easy to cross compile kernels
● It's hard to cross compile userspace
● Get userspace solved early

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

