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FPGA System
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Virtex 4FX FPGA System
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Virtex FPGA Linux Support

● Basic support for PowerPC in mainline
– Serial ports

– ML300/403 Framebuffer

– SystemACE device

● Extra drivers in Xilinx public git tree
– Ethernet devices, DMA, I2C, GPIO

– Microblaze support

– Currently merged with v2.6.24-rc8

– Rewrite needed before mainline



  

Lesson Learned: Don't make 
developers lives hard

● Hardware Engineers don't like to compile 
kernels

● Software Engineers don't like to synthesis 
bitstreams

● Nobody likes to compile user space.
● Device Tree is your friend.
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Lesson Learned: Get your drivers 
into mainline

● Andrew talked about this this morning
● You're not doing anything that novel anyway
● No; you're really not
● I mean it -- others have fought with what you're 

fighting with before; someone else will have 
some advice



  

Lesson Learned: Hardware is the 
new Software

● Should follow software best practices
● Revision Control
● Automated builds
● Peer review

– Let the SW folks look at the HW design!!!  (and visa 
versa)



  

Lesson Learned: It really might be a 
hardware bug

● Talk to your hardware engineer immediately 
when you have problems

● They can probe any signal inside the FPGA 
design



  

Lesson Learned: It's easy to spend 
all your budget on “boring” stuff

● PCI, USB, ETH, Serial
● Matt Mackall, “If your vendor isn't pushing stuff 

to mainline, go beat them up”
● You've got better things to do

– Like the custom application logic you're putting in 
the FPGA

– Otherwise you'd probably use an SoC

– Start the design chosing platforms that already work 
well.

● Cypress c67x00 driver example



  

Lesson Learend: Make things Work 
first...

● ...before you make them fast/small/clever
● Get a stable baseline so that you know when 

things break
● Things break frequently, so be setup to know 
when things break



  

Lesson Learned: Prepare for 
dynamic hardware in the kernel

● Expect things to change; they will anyway
● This happens for SoCs to; just at a much lower 

turnaround rate



  

Lesson Learned: All of your 
assumptions are wrong

● Customizable peripherals, don't make 
assumptions about configuration.

● Design your code to be prepared for changes to 
functionality

● ie. Xilinx DMA
● But be realistic too.  You can't design for 

something that doesn't exist; but you can 
design your code for things that are likely to 
change.

● Avoid hardcoding



  

Lesson Learned: User Space Sucks

● It's easy to cross compile kernels
● It's hard to cross compile userspace
● Get userspace solved early
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