Demystifying synchronisation

Elaborate communication rituals to

bring pixels to your retinas

Daniel Stone
Graphics Lead, Collabora

daniels@collabora.com

Open First

What are we covering?

® Avery basic 15-year old GPU model

® Sharing between contexts & processes
* Implementing this in the kernel

® Our strange tuture present

®* Practical presentation pipelines

In the beginning, there was DRM

Let’s render a triangle and read it back on

the CPU
A simple example from a simpler time
One device, one FIFO command queue

DRM provides an interface (of sorts) for

userspace to use GPU hardware

DRM: it’s a state of mind

°* DRM has almost no generic 1octls

°* All device access is through device-specific

loctls, forcing device-specific userspace
® Mesais the canonical example for gfx

°* Thisis why we’re insistent about open

userspace: over half the driver is there!

Step 1: memory access

First device-specific ioctl: allocate mem
GPU memory Is special, not malloc
Memory mostly untyped + byte length
‘BO’ Is a buffer object: pointer & size

Not just pixel data: also state, programs

Step 1: memory access (internals)

® Memory iIs allocated in system or VRAM
® Allocation is recorded globally to device
°* Exposed to context via integer handle

®* Internally usually an array of struct

pagell

lCuntext #1

GEM handle

ol

GEM buffer object (BO)

struct pagell

DRM device

Step 2: send the GPU into action

® Second device-specific ioctl: command

submission

°* CSioctl will take input/output buffer list

+ auxiliary buffers (state, code)

® CSioctlwill append commands to

queue

Step 3: getting to the CPU

® Third device-specific ioctl: buffer access

* Similar to DMA API, will take buf + area +

access mode
®* Map the buffer memory into CPU-visible
°* Atriangle! In CPU memory!

°* [pause for applause]

But aren’t GPUs asynchronous?

® Oh..yeah.

°* Butremember how we passed the BO list

INto the command submit ioctl?
°* That wasn’t just for fun.

°* Knowing which commands touch which

BOs lets synchronise against them

Implicit synchronisation

Implicit synchronisation creates the

illusion of synchronous/FIFO work
CS ioctl takes list of {BO, access mode}

Mapping buffer into CPU address space
stalls in driver-specific ioctl for all

commands to complete

Implicit everywhere!

® Not just for CPU vs. GPU access ..

°* Implicit sync lets us share between

processes/contexts

®* Driver records ‘breadcrumb’ of hardware

sequence number

* Avoid WAR/RAW hazards via stalls

Sharing between processes?

® dmabufis aFD wrapper around BOs

®* Allocations happen in device, BO
handles in context, dmabuf system-

wide

®* Allows BO references to be passed

between contexts/processes

GEM &
dmabuf

Context #2!

GEM buffer object (BO)

struct page(]

DRM device

14

Sharing between devices?!

* dmabuf is generic kernel API allowing

sharing between devices/subsystems

® GPU memory isn’t that special, mostly

just pages

® Each subsystem has its own

import/export API for dmabuf

F T ======7°-"======== r= == ======" = - "========~
IContext #1

GEM &
V42 &
dmabuf

GEM handle

GEM buffer object (BO) vbuf mem

struct pagel]

|
1
|
|
struct pagel] :
:
1
|

DRM device V4L2 device

16

What can’t dmabuf do?!

* Well, alot
* dmabufis not an allocator
®* dmabufis not a constraint solver

® It's just a handle to pages, and a semi-

complete cache-coherence interface

Oh, that’s disappointing

® |t’s a start, at least ...
® Lingua franca for buffer sharing
* Kernel dmabuf users: DRM, V4L2, others

®* Userspace: Wayland, X11, EGL, Vulkan,
GStreamer, PipeWire, VA-API, everything

Great! Where to now?

°* Back to the talk topic maybe?

°* Now we’ve exposed buffers, let’s expose

sync operations as well
® And surprisingly,as a FD ..

® CSioctl returns dma-fence FD to signal

completion of GPU-side work

What is dma-fence?

° AlsoaFD, also cross-device/subsystem
°* Also importable by all kernel+userspace
°* FD materialised when work Is queued
® Sighals once when work is completed

® Guaranteed to signal in ‘reasonable’ time

dma-fence in the kernel

®* Same-device as efficient before: device can do

Internal sync operations against own fences

°* enable_signalling() callback forces CPU

notification of work completion

® Userspace can poll on FD, other devices can

get callbacks to schedule own work

Even more levels of illusion

* dma-resv ties admabuf to dma-fences

* Allows implicit synchronisation across

contexts/processes

°* Before you schedule any work against a BO, check

the dmabuf dma-resv for others’ fences

®* Place adma-fence on the dma-resv as you do

schedule work, for others to sync against

22

Easy as you like

°* Butwhydowe have dma-resv when all

userspace supports dma-fence?
°* Partly we have to forever, because X11

®* But mostly because it’s not actually

sufficient for what we need ...

How hard can it possibly be?

So we just need to turn binary to integer,

right? drm-syncobj does this, right?

syncobj gives us the mechanism to
contain multiple fences in a single
container, which are roughly the

semantics we want

But ...

°* Remember how | said fences complete

In guaranteed time?

® Timeline semaphores don’t: they allow

wait-before-signal

® This makes a mockery of our

dependency scheduler

But ...

®* Hard to schedule jobs with WBS

®* Painful interactions with memory

management: swap, reclaim, etc

® Can’t provide the same interop with

Implicit sync because it might never fire

* Pain.

The tip of the iceberg

Hardware has fully isolated contexts
New APIs need user-controlled VMAs
Full autonomous scheduling for rings

Parallels with io_uring/RDMA: kernel

not adding any value, just overhead

Anything else?

Games truly need huge throughput

Heavily pipelined, speculative,

asynchronous operations and paging

So we have to let them use the fancy
user contexts & rings to meet

performance demands

So we’re solving for games

° Also GPGPU/compute
°* Long-running workloads, gigantic data sets

® GPU-demand page faults coming any year

NOW ...

* Different demands, same hardware + APIs

What’s your brilliant solution then?

°* Well, we’re not quite sure
® ..but neither are the hardware people
® Current thinking is probably a hybrid

® Userspace gets its own happy little world

most of the time, at full performance

What’s your brilliant solution then?

°® Butassoon as interop is required,

degenerate to lower-performance mode

® Letuserspace run ahead until it needs

to interact with the outside world

®* Interfere only at the margins, enforce

only what we need to

Sounds easy?

°* Notentirely, no

®* Violent kernel & userspace API change

required
°* Hardware designs aren’t finalised

°* Alot of open questions, not loads of time

Is display at least easy?

* Well, pretty straightforward

® Onceclient has finished draw and handed
off, no need to track thousands of draw

calls - just a couple
® Onlyoneor two fences needed

® No CPU overhead concerns with this

Oh, that’s good then

Display is also backwards though ...

Data flows forwards: client paints
content, hands to window system,

window system hands to display

But timing flows backwards from display

to window system to client

Why?

The display clock is (sort of) fixed

We know exactly what deadline we need

to hit to get something on screen

Compositor works backwards to find

latest time to prepare content and hand

off to display

vblank

Compositor

vblank

l

_ld raw

Client

36

vblank! Easy.

®* Working from vblank is great if you can
produce content slightly faster than the

display runs

* Working from vblank is great if you

don’t mind 16ms latency

®* Neither of these things are true

vblank strikes back

® Reduce latency by introducing a

separate ‘paint now’ signal

® Also allows adaptation to slow clients by
pacing them to lower multiple or

overlap

®* See Michel Danzer’'s Mutter work

vblank +
frame

vblank

Compositor

vblank

frame
N
ﬁ\%ﬁ\‘a
draw

Client

39

Compositor complexity

°* Butwhat about wait-before-signal

clients?

® Need to introduce late-binding decision

point in compositors

®* Just before paint, check for readiness

and decide between old & new

vblank +
frame +
WBS

vblank
|

Compositor

vblank

frame

draw

decide]

Client

41

What have we learned?

Graphics is surprisingly difficult

Games wants console latency & pert,

desktop unknowability, laptop hardware

Compute wants HPC functionality and

throughput on fixed workload/hardware

Both of them share the same APlIs ...

Sounds difficult

°* Well, it’s got all of our attention at least

® Manyvendors & community members

focusing hard on all these topics
°* Itll keep us busy for a while

°* ..and in the meantime, no-one can buy

GPUs anyway

Thank you

Message {
config {

priority: "high"
body: "Collabora 1s hiring"

recipient: "you"

calltoaction:

}
}

"nttp://col.la/join"

44

