
Open First

Demystifying synchronisation

Elaborate communication rituals to

bring pixels to your retinas

Daniel Stone

Graphics Lead, Collabora

daniels@collabora.com

2

What are we covering?

● A very basic 15-year old GPU model

● Sharing between contexts & processes

● Implementing this in the kernel

● Our strange future present

● Practical presentation pipelines

3

In the beginning, there was DRM

● Let’s render a triangle and read it back on

the CPU

● A simple example from a simpler time

● One device, one FIFO command queue

● DRM provides an interface (of sorts) for

userspace to use GPU hardware

4

DRM: it’s a state of mind

● DRM has almost no generic ioctls

● All device access is through device-specific

ioctls, forcing device-specific userspace

● Mesa is the canonical example for gfx

● This is why we’re insistent about open

userspace: over half the driver is there!

5

Step 1: memory access

● First device-specific ioctl: allocate mem

● GPU memory is special, not malloc

● Memory mostly untyped + byte length

● ‘BO’ is a buffer object: pointer & size

● Not just pixel data: also state, programs

6

Step 1: memory access (internals)

● Memory is allocated in system or VRAM

● Allocation is recorded globally to device

● Exposed to context via integer handle

● Internally usually an array of struct

page[]

7

GEM BOs

8

Step 2: send the GPU into action

● Second device-specific ioctl: command

submission

● CS ioctl will take input/output buffer list

+ auxiliary buffers (state, code)

● CS ioctl will append commands to

queue

9

Step 3: getting to the CPU

● Third device-specific ioctl: buffer access

● Similar to DMA API, will take buf + area +

access mode

● Map the buffer memory into CPU-visible

● A triangle! In CPU memory!

● [pause for applause]

10

But aren’t GPUs asynchronous?

● Oh ... yeah.

● But remember how we passed the BO list

into the command submit ioctl?

● That wasn’t just for fun.

● Knowing which commands touch which

BOs lets synchronise against them

11

Implicit synchronisation

● Implicit synchronisation creates the

illusion of synchronous/FIFO work

● CS ioctl takes list of {BO, access mode}

● Mapping buffer into CPU address space

stalls in driver-specific ioctl for all

commands to complete

12

Implicit everywhere!

● Not just for CPU vs. GPU access ...

● Implicit sync lets us share between

processes/contexts

● Driver records ‘breadcrumb’ of hardware

sequence number

● Avoid WAR/RAW hazards via stalls

13

Sharing between processes?

● dmabuf is a FD wrapper around BOs

● Allocations happen in device, BO

handles in context, dmabuf system-

wide

● Allows BO references to be passed

between contexts/processes

14

GEM &
dmabuf

15

Sharing between devices?!

● dmabuf is generic kernel API allowing

sharing between devices/subsystems

● GPU memory isn’t that special, mostly

just pages

● Each subsystem has its own

import/export API for dmabuf

16

GEM &
V4L2 &
dmabuf

17

What can’t dmabuf do?!

● Well, a lot

● dmabuf is not an allocator

● dmabuf is not a constraint solver

● It’s just a handle to pages, and a semi-

complete cache-coherence interface

18

Oh, that’s disappointing

● It’s a start, at least ...

● Lingua franca for buffer sharing

● Kernel dmabuf users: DRM, V4L2, others

● Userspace: Wayland, X11, EGL, Vulkan,

GStreamer, PipeWire, VA-API, everything

19

Great! Where to now?

● Back to the talk topic maybe?

● Now we’ve exposed buffers, let’s expose

sync operations as well

● And surprisingly, as a FD ...

● CS ioctl returns dma-fence FD to signal

completion of GPU-side work

20

What is dma-fence?

● Also a FD, also cross-device/subsystem

● Also importable by all kernel+userspace

● FD materialised when work is queued

● Signals once when work is completed

● Guaranteed to signal in ‘reasonable’ time

21

dma-fence in the kernel

● Same-device as efficient before: device can do

internal sync operations against own fences

● enable_signalling() callback forces CPU

notification of work completion

● Userspace can poll on FD, other devices can

get callbacks to schedule own work

22

Even more levels of illusion
● dma-resv ties a dmabuf to dma-fences

● Allows implicit synchronisation across

contexts/processes

● Before you schedule any work against a BO, check

the dmabuf dma-resv for others’ fences

● Place a dma-fence on the dma-resv as you do

schedule work, for others to sync against

23

Easy as you like

● But why do we have dma-resv when all

userspace supports dma-fence?

● Partly we have to forever, because X11

● But mostly because it’s not actually

sufficient for what we need ...

24

How hard can it possibly be?

● So we just need to turn binary to integer,

right? drm-syncobj does this, right?

● syncobj gives us the mechanism to

contain multiple fences in a single

container, which are roughly the

semantics we want

25

But ...

● Remember how I said fences complete

in guaranteed time?

● Timeline semaphores don’t: they allow

wait-before-signal

● This makes a mockery of our

dependency scheduler

26

But ...

● Hard to schedule jobs with WBS

● Painful interactions with memory

management: swap, reclaim, etc

● Can’t provide the same interop with

implicit sync because it might never fire

● Pain.

27

The tip of the iceberg

● Hardware has fully isolated contexts

● New APIs need user-controlled VMAs

● Full autonomous scheduling for rings

● Parallels with io_uring/RDMA: kernel

not adding any value, just overhead

28

Anything else?

● Games truly need huge throughput

● Heavily pipelined, speculative,

asynchronous operations and paging

● So we have to let them use the fancy

user contexts & rings to meet

performance demands

29

So we’re solving for games

● Also GPGPU/compute

● Long-running workloads, gigantic data sets

● GPU-demand page faults coming any year

now ...

● Different demands, same hardware + APIs

30

What’s your brilliant solution then?

● Well, we’re not quite sure

● ... but neither are the hardware people

● Current thinking is probably a hybrid

● Userspace gets its own happy little world

most of the time, at full performance

31

What’s your brilliant solution then?

● But as soon as interop is required,

degenerate to lower-performance mode

● Let userspace run ahead until it needs

to interact with the outside world

● Interfere only at the margins, enforce

only what we need to

32

Sounds easy?

● Not entirely, no

● Violent kernel & userspace API change

required

● Hardware designs aren’t finalised

● A lot of open questions, not loads of time

33

Is display at least easy?

● Well, pretty straightforward

● Once client has finished draw and handed

off, no need to track thousands of draw

calls – just a couple

● Only one or two fences needed

● No CPU overhead concerns with this

34

Oh, that’s good then

● Display is also backwards though ...

● Data flows forwards: client paints

content, hands to window system,

window system hands to display

● But timing flows backwards from display

to window system to client

35

Why?

● The display clock is (sort of) fixed

● We know exactly what deadline we need

to hit to get something on screen

● Compositor works backwards to find

latest time to prepare content and hand

off to display

36

Ah,
vblank!

37

vblank! Easy.

● Working from vblank is great if you can

produce content slightly faster than the

display runs

● Working from vblank is great if you

don’t mind 16ms latency

● Neither of these things are true

38

vblank strikes back

● Reduce latency by introducing a

separate ‘paint now’ signal

● Also allows adaptation to slow clients by

pacing them to lower multiple or

overlap

● See Michel Dänzer’s Mutter work

39

vblank +
frame

40

Compositor complexity

● But what about wait-before-signal

clients?

● Need to introduce late-binding decision

point in compositors

● Just before paint, check for readiness

and decide between old & new

41

vblank +
frame +

WBS

42

What have we learned?

● Graphics is surprisingly difficult

● Games wants console latency & perf,

desktop unknowability, laptop hardware

● Compute wants HPC functionality and

throughput on fixed workload/hardware

● Both of them share the same APIs ...

43

Sounds difficult

● Well, it’s got all of our attention at least

● Many vendors & community members

focusing hard on all these topics

● It’ll keep us busy for a while

● ... and in the meantime, no-one can buy

GPUs anyway

44

Thank you

Message {
 config {
 priority: "high"
 body: "Collabora is hiring" // Many open
positions
 recipient: "you" // Please
join us
 calltoaction: "http://col.la/join"
 }
}

