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Processor trends 
Old problems, but now in embedded CPUôs 
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ÅTo get more performance, 

processors get deeper 

pipelines 

ï Split the work load in 

multiple stages, so time per 

cycle gets shorter 
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Causes of a high CPI 

1: ld  r1, [r2]  

sub.f  r0, r0, 1  

st  r1, [r3]  

add r2, r2, 4  

add r3, r3, 4  

bnz  1b 

<do something else>  
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Example: simplified memcpy loop in assembly 

 

ï The branch at the end of the loop is 

predicted taken, so the CPU can keep on 

filling pipeline stages 
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Causes of a high CPI (2) 
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Pipeline bubble / latency 

Example: simplified memcpy loop in assembly 

 

ï If the branch is not taken / mispredicted, 

the pipeline needs to be flushed and a 

different instruction needs to be fetched!  
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Processor trends 
How to keep CPI low? 
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ÅVarious ways to keep CPI low: 

ï Do multiple instructions at once (super-scalar) 

ï To decrease the penalty of branch mispredicts, we can 

speculatively start with execution of both paths; 

ÅHowever, this costs power and area (# of transistors) 

ï Can we do better? 
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Memory latency 
Old problems, but now in embedded CPUôs (2) 

ÅMemory latency is decreasing, but CPU speeds are 

increasing at a faster rate 

ï Now memory is also bottleneck for embedded CPUôs 

ï Latency increases further with multiple cores 
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CPU core 

 

 

 

 

Memory latency 
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External storage 

(NAND or hard drive) >> 25e3 cycles 

ÅA cache miss in both caches 

could cause the CPU to sit idle 

for > 50 cycles 
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What is perf? 

ÅOriginally Performance Counters 

for Linux (PCL) 

ï Counts HW events (cache misses, 

pipeline stalls, etc.) 

ï Uses kernel infrastructure, no 

instrumentation required, low 

overhead 

ï Renamed to perf events in 2009 

when it became more generic 

ÅUsed to optimize the software for 

the ATLAS detector that found the 

Higgs particle 
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What is perf? 

ÅTwo modes: 

ï Statistics: just count events 

ï Profiling: for every nth event, record PC 

HW events 

ÅStall cycles 

ÅD$ misses 

ÅTLB reloads 

ÅBranch 
mispredicts 

SW events 

ÅPage faults 

ÅContext switches 

ÅClock (interval 
timer) 

Trace points 
(needs root!) 

ÅSpecific system 
calls 

ÅVarious file 
system hooks 

ÅEtc. 

Needs root! 

include/trace/events/*.h for examples 
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How to use perf? 

ÅPrerequisites: 

ï Perf tools in your rootfs 

ï For instance, using Buildroot, enable BR2_PACKAGE_PERF 

ï Kernel with Perf enabled 

ï Enable CONFIG_PERF_EVENTS 

ï For trace points, CONFIG_TRACEPOINTS needs to be enabled. 

This is selected through various kernel config option combinations: 

ï CONFIG_FTRACE and CONFIG_FUNCTION_TRACER; 

ï CONFIG_FTRACE and CONFIG_ENABLE_DEFAULT_TRACERS; 

ï CONFIG_KPROBE_EVENT 
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How to use perf? 

Å It has a git-like command interface 

ÅTo just get statistics, without profile, you can use: 

 
$ perf  stat <command> 
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How to use perf? 

ÅFor profiling, you need to actually record samples to a 

file; this is done using: 

 
$ perf  record <command> 
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How to use perf? 

ÅThe result can be obtained with: 

 
$ perf  report  

$ perf  report > file.txt  

mischa@mjonker - ubuntu - d630:~$ cat file.txt  

# ========  

# captured on: Thu Oct 10 11:45:44 2013  

# hostname : mjonker - ubuntu - d630  

# os  release : 3.8.0 - 31- generic  

# perf  version : 3.8.13.8  

# arch : i686  

# nrcpus  online : 2  

# nrcpus  avail : 2  

# cpudesc  : Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz  

# cpuid  : GenuineIntel,6,15,13  

# total memory : 2055272 kB 

# cmdline  : / usr /bin/perf_3.8.0 - 31 record ./copy  

# event : name = cycles, type = 0, config  = 0x0, config1 = 

0x0, config2 = 0x0, excl_usr  = 0, excl_kern  = 0, excl_host  = 

0, excl_guest  = 1, precise_ip  = 0, id = { 25, 26 }  

# HEADER_CPU_TOPOLOGY info available, use - I to display  

# pmu mappings: cpu  = 4, software = 1, tracepoint  = 2, 

breakpoint = 5  

# ========  

# 

# Samples: 722  of event 'cycles'  

# Event count (approx.): 381229490  

# 

# Overhead  Command      Shared Object    Symbol  

# ........  .......  .................  ........  

# 

    99.04%     copy  copy                [.] main  

     0.90%     copy  [ kernel.kallsyms ]  [k] 0xc103c198  

     0.05%     copy  ld - 2.17.so         [.] 0x0000e360  
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How to use perf? 

ÅTo enable kernel symbol resolution, you can do the 
following (as root!!) before starting perf  record  

 # echo 0 > / proc /sys/kernel/ kptr_restrict  
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How to use perf? 

ÅTo enable kernel symbol resolution, you can do the 
following (as root!!) before starting perf  record  

 # echo 0 > / proc /sys/kernel/ kptr_restrict  
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How to use perf? 

ÅTo get a better idea of what C code is responsible, 

compile your program with ïO0 ïg 

ï Thatôs intrusive though 

 

> 50% of 

cycles spent in 

one instruction! 
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mischa@mjonker - ubuntu - d630:~$ perf  list  

 

List of pre - defined events (to be used in - e):  

  cpu - cycles OR cycles                               [Hardware event]  

  instructions                                       [Hardware event]  

  cache - references                                   [Hardware event]  

  cache - misses                                       [Hardware event]  

  branch - instructions OR branches                    [Hardware event]  

  branch - misses                                      [Hardware event]  

  bus - cycles                                         [Hardware event]  

  stalled - cycles - frontend OR idle - cycles - frontend    [Hardware event]  

  stalled - cycles - backend OR idle - cycles - backend      [Hardware event]  

  ref - cycles                                         [Hardware event]  

 

  cpu - clock                                          [Software event]  

  task - clock                                         [Software event]  

  page - faults OR faults                              [Software event]  

  context - switches OR cs                              [Software event]  

  cpu - migrations OR migrations                       [Software event]  

  minor - faults                                       [Software event]  

  major - faults                                       [Software event]  

  alignment - faults                                   [Software event]  

  emulation - faults                                   [Software event]  

 

  L1- dcache - loads                                    [Hardware cache event]  

  L1- dcache - load - misses                              [Hardware cache event]  

  L1- dcache - stores                                   [Hardware cache event]  

  L1- dcache - store - misses                             [Hardware cache event]  

  L1- dcache - prefetches                               [Hardware cache event]  

  L1- dcache - prefetch - misses                          [Hardware cache event]  

  L1- icache - loads                                    [Hardware cache event]  

  L1- icache - load - misses                              [Hardware cache event]  

  L1- icache - prefetches                               [Hardware cache event]  

  L1- icache - prefetch - misses                          [Hardware cache event]  

  LLC- loads                                          [Hardware cache event]  

  LLC- load - misses                                    [Hardware cache event]  

  LLC- stores                                         [Hardware cache event]  

  LLC- store - misses                                   [Hardware cache event]  

  LLC- prefetches                                      [Hardware cache event]  

  LLC- prefetch - misses                                [Hardware cache event]  

  dTLB- loads                                         [Hardware cache event]  

  dTLB- load - misses                                   [Hardware cache event]  

  dTLB- stores                                        [Hardware cache event]  

  dTLB- store - misses                                  [Hardware cache event]  

  dTLB- prefetches                                     [Hardware cache event]  

 

How to use perf? 

ÅBy default, perf uses the ócyclesô event, with sampling 

frequency = 4 kHz 

ÅWe can use 100ôs of different events for sampling; 

ï e.g. to trigger a sample for every nth D$ load miss, record like this: 

ï perf  record ïe L1 - dcache - load - misses ïc n <command>  

ï Use perf  list  to get a list of events 

ÅNote that cache misses are not time-based events: 

ï if a frequency is specified, the frequency is used as a guideline to 

determine the sampling interval. 
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mischa@mjonker - ubuntu - d630:~$ perf  list  

 

List of pre - defined events (to be used in - e):  

  cpu - cycles OR cycles                               [Hardware event]  

  instructions                                       [Hardware event]  

  cache - references                                   [Hardware event]  

  cache - misses                                       [Hardware event]  

  branch - instructions OR branches                    [Hardware event]  

  branch - misses                                      [Hardware event]  

  bus - cycles                                         [Hardware event]  

  stalled - cycles - frontend OR idle - cycles - frontend    [Hardware event]  

  stalled - cycles - backend OR idle - cycles - backend      [Hardware event]  

  ref - cycles                                         [Hardware event]  

 

  cpu - clock                                          [Software event]  

  task - clock                                         [Software event]  

  page - faults OR faults                              [Software event]  

  context - switches OR cs                              [Software event]  

  cpu - migrations OR migrations                       [Software event]  

  minor - faults                                       [Software event]  

  major - faults                                       [Software event]  

  alignment - faults                                   [Software event]  

  emulation - faults                                   [Software event]  

 

  L1- dcache - loads                                    [Hardware cache event]  

  L1- dcache - load - misses                              [Hardware cache event]  

  L1- dcache - stores                                   [Hardware cache event]  

  L1- dcache - store - misses                             [Hardware cache event]  

  L1- dcache - prefetches                               [Hardware cache event]  

  L1- dcache - prefetch - misses                          [Hardware cache event]  

  L1- icache - loads                                    [Hardware cache event]  

  L1- icache - load - misses                              [Hardware cache event]  

  L1- icache - prefetches                               [Hardware cache event]  

  L1- icache - prefetch - misses                          [Hardware cache event]  

  LLC- loads                                          [Hardware cache event]  

  LLC- load - misses                                    [Hardware cache event]  

  LLC- stores                                         [Hardware cache event]  

  LLC- store - misses                                   [Hardware cache event]  

  LLC- prefetches                                      [Hardware cache event]  

  LLC- prefetch - misses                                [Hardware cache event]  

  dTLB- loads                                         [Hardware cache event]  

  dTLB- load - misses                                   [Hardware cache event]  

  dTLB- stores                                        [Hardware cache event]  

  dTLB- store - misses                                  [Hardware cache event]  

  dTLB- prefetches                                     [Hardware cache event]  

 

How to use perf? 

ÅLooking at L1 D$ load misses: 

ï one instruction responsible for > 80% of D$ ld misses! 

  

 

Note: this is on x86 architecture, which 

already does quite some speculative 

prefetching on its own, and has large 

cache sizes 
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Need for prefetching 
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Å Performance of any benchmark that uses data sets >> D$ size 
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ospfv2 and routelookup donôt use a lot of memory, the other two do 

cycles latencyĄ 

s
p

e
e

d
Ą

 



© Synopsys 2013 21 

Need for prefetching 
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Need for prefetching 
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Å Plain memcpy shows even more 

performance degradation with 

increasing memory latency 
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More than 67%  

performance drop 

at 75 cycles ltcy 
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Memory latency causes 

stall cycles 

In reality can happen for both 

load and store, due to 

allocate on write 

cache line allocation policy 
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load [0x00] 

store [0x00] 
load [0x04] 
store [0x04] 
load [0x08] 
store [0x08] 
load [0x0C] 
store [0x0C] 
load [0x10] 

store [0x10] 
load [0x14] 
store [0x14] 
load [0x18] 
store [0x18] 
load [0x1C] 
store [0x1C] 

preftch [0x10] c
a
c
h
e
 lin

e
 re

fill 
preftch [0x20] c

a
c
h
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 lin

e
 re

fill 
stall 

c
a
c
h
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fill 

store [0x00] 
load [0x04] 
store [0x04] 
load [0x08] 
store [0x08] 
load [0x0C] 
store [0x0C] 
load [0x10] 

store [0x10] 
load [0x14] 
store [0x14] 
load [0x18] 
store [0x18] 
load [0x1C] 
store [0x1C] 

stall 
stall 
stall 
stall 
stall 

stall 
stall 

c
a
c
h
e
 lin

e
 re

fill 

What is prefetching? 

Example of imaginary system with 16 byte cache lines 
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load [0x00] 

store [0x00] 
load [0x04] 
store [0x04] 
load [0x08] 
store [0x08] 
load [0x0C] 
store [0x0C] 
load [0x10] 

store [0x10] 
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store [0x1C] 

preftch [0x10] c
a
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h
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store [0x00] 
load [0x04] 
store [0x04] 
load [0x08] 
store [0x08] 
load [0x0C] 
store [0x0C] 
load [0x10] 

store [0x10] 
load [0x14] 
store [0x14] 
load [0x18] 
store [0x18] 
load [0x1C] 
store [0x1C] 
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stall 
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What is prefetching? (2) 

Å HW assisted  
Å CPU tries to recognize patterns, 

and speculatively fetch more data 

than requested from memory 

Å Compiler assisted 
Å Compiler tries to recognize 

patterns, and inserts prefetch 

instructions into the code 

Å Manually (using profiling) 
Å SW developer inserts prefetch 

instructions manually, based on 

profiling or specific knowledge 

about an algorithm 

 

Multiple ways of prefetching 



© Synopsys 2013 25 

Compiler assisted prefetching 
Using GCC to generate prefetch instructions 

long *copy (long * dest , long * src , int  size)  

{  

        int  i ;  

        for ( i  = 0; i  < size; i ++) {  

                dest [ i ] = src  [ i ];  

        }  

        return dest ;  

}  

00000000 <copy>:  

   0:   2d 0a 72 00                     brlt.d     r2,1,2c <copy+0x2c>  

   4:   42 21 01 01                     sub        r1,r1,4  

   8:   15 26 82 70 ff ff fc ff         add2       r2, - 4,r2  

  10:   2f 22 82 00                     lsr        r2,r2  

  14:   2f 22 82 00                     lsr        r2,r2  

  18:   44 71                           add_s      r2,r2,1  

  1a:   00 43                           mov_s      r3,r0  

  1c:   0a 24 80 70                     mov        lp_count,r2  

  20:   a8 20 80 01                     lp         2c <copy+0x2c>  

  24:   04 11 02 02                     ld.a       r2,[r1,4]  

  28:   04 1b 90 00                     st.ab      r2,[r3,4]  

  2c:   e0 7e                           j_s        [blink]  

 


