SYNoPSys

cccccc ting Innovation

Fighting latency

How to optimize your system using perf

Mischa Jonker
October 24t 2013

Contents

A Introduction
I Processor trends; what kind of latency are we fighting?

A What is perf?

A Using perf to identify bottlenecks

A Prefetching

A Using GCC options to tune prefetching

© Synopsys 2013 2

Processor trends
Ol d problems, but now in embedded CPUSOG

A To get more performance, 4

Processors get deeper
pipelines —+—cycles per

Instruction

I Split the work load in n | —=-cycle time
multiple stages, so time per _

cycle gets shorter Tomeper

Pipeline stages A

Deeper 0 5 10 15 20 25 30

P recn pipelines
P recn) pecose Y Execue 2
MEM

© Synopsys 2013

Causes of a high CPI

Example: simplified memcpy loop in assembly .., [r2]

sub.f 10,r0,1

I The branch at the end of the loop is st rl, [r3]
predicted taken, so the CPU can keep on add 12, 12, 4

filling pipeline stages add r3, 13, 4
bnz 1b

<do something else>

1:1d r1, [r2] 1:1d r1, [r2] 1:1d r1, [r2] 1: Idri, [r2] 1:1dr1, [r2] 1:1dr1, [r2] 1:1d r1, [r2]
sub.fr0, r0, 1 sub.fr0, r0, 1 sub.fr0, r0, 1 sub.fr0, r0, 1 sub.fr0, r0, 1 sub.fr0, r0, 1 sub.fr0, r0, 1
strl, [r3] strl, [r3] strl, [r3] strl, [r3] strl, [r3] strl, [r3] strl, [r3]
addr2,r2, 4 addr2,r2, 4 addr2,r2, 4 addr2,r2, 4 addr2,r2, 4 addr2,r2, 4 addr2,r2, 4
addr3, r3, 4 addr3,r3, 4 addr3, r3, 4 addr3,r3, 4 addr3, r3, 4 addr3, r3, 4 addr3, r3, 4
bnz 1b bnz 1b bnz 1b bnz 1b bnz 1b bnz 1b bnz 1b

© Synopsys 2013 4 SY“UP

Causes of a high CPI (2)

Example: simplified memcpy loop in assembly .., [r2]

sub.f 10,10, 1
i If the branch is not taken / mispredicted, st rl,[r3]
the pipeline needs to be flushed and a addr2, 12, 4
different instruction needs to be fetched! de r31’br3' 4
nz

<do something else>

1:1d r1, [r2] | I
1:1drl, [r2] 1:1d r1, [r2]
sub.fro, r0, 1 |
I sub.fr0, r0, 1 sub.fro, ro, 1
strl, [r3] I
. . strl, [r3 strl, [r3
add 12, 12, 4 ' Pipeline bubble / latency 3] 3]
1 | add r2, r2, 4 addr2,r2, 4
add r3,r3, 4 I |
addr3, r3, 4 addr3, r3, 4
bnz 1b | |
I bnz 1b bnz 1b

<do something else>

© Synopsys 2013 5 SY“UP

Processor trends

How to keep CPI low?

A Various ways to keep CPI low:
I Do multiple instructions at once (super-scalar)

I To decrease the penalty of branch mispredicts, we can
speculatively start with execution of both paths;

A However, this costs power and area (# of transistors)

I Can we do better?

/A —e—cycles per
-

instruction
R .

-#-cycletime N

——time per
instruction

——
Pipeline stages A Pipeline stages A
5 10 15 20 25 30 0 5 10 15 20 25 30

© Synopsys 2013 6

Memory latency

Ol d problems, but now I n embedded

A Memory latency is decreasing, but CPU speeds are
Increasing at a faster rate

i Now memory iIs also bottleneck f
I Latency increases further with multiple cores

. \& \\

. AN

6 NN

o NN

\
. \ ~
sz {\ n \\\’\r\,\’
2o \.\FI\}*-.—

1980 1985 1990 1995 2000 2005 2010 2015

memory access time (random access) Mtime of one CPU clock cycle (PC)
Atime of one CPU clock cycle (embedded)

© Synopsys 2013 7

Memory latency

CPU core

L1 1$

Execution

unit 1-3 L1 D$ 5-10 cycles
cycles

A A cache miss in both caches
could cause the CPU to sit idle
for > 50 cycles

System bus

50-100 cycles

Memory controller

External storage External DDR memory
(NAND or hard drive) >> 25e3 cycles

© Synopsys 2013 8

What is perf?

A Originally Performance Counters . ¢
for Linux (PCL)

I Counts HW events (cache misses,
pipeline stalls, etc.)

I Uses kernel infrastructure, no
Instrumentation required, low
overhead

I Renamed to perf events in 2009
when it became more generic

A Used to optimize the software for §
the ATLAS detector that found the [§
Higgs particle

Lo m-- -,’;,_‘e;,,,; ‘ ';*f (1 sSsaates
/7! : M ‘, }s '\;“ OIS
! L LT Y

© Synopsys 2013 9 SYNoP ation

What is perf?

A Two modes:
I Statistics: just count events
i Profiling: for every nt" event, record PC

Needs root!

include/trace/events/*.h for examples

I il |

A Stall cycles A Page faults A Specific system

A D$ misses A Context switches calls

A TLB reloads A Clock (interval A Various file

A Branch timer) system hooks
mispredicts A Etc.

© Synopsys 2013 10

How

to use perf?

A Prerequisites:
I Perf tools in your rootfs

For instance, using Buildroot, enable BR2 PACKAGE_PERF

I Kernel with Perf enabled

© Synopsys 2013

Enable CONFIG_PERF_EVENTS

For trace points, CONFIG_TRACEPOINTS needs to be enabled.
This is selected through various kernel config option combinations:

I CONFIG_FTRACE and CONFIG_FUNCTION_TRACER;
I CONFIG_FTRACE and CONFIG_ENABLE_DEFAULT_TRACERS;
I CONFIG_KPROBE_EVENT

Accelerating
Innovation

11 SYNOPSYS

How to use perf?

A It has a git-like command interface
A To just get statistics, without profile, you can use:

$ perf stat <command>

E perf =stat echo hello world

ello world
Performance counter stats for 'echo hello world’:
4_ 088088 taszk-—clock it A.784 CPUs utili=ed
3 context—switches 1 B.758 K-/sec
A cpu—migrations it A.WAA K- =zec
A page—faults it A.008 K- =zec
2455962 cycles it A.614 GH=
121768 stalled-—cycles—frontend it 4.9%6% frontend cycles idle
788344 stalled—cycles—backend i backend cycles idle
381142 dinstructions i B.12 insns per cycle
i 3.26 stalled cycles per insn
44258 branches 1 11 .863 Ms=zec
Y2 branch—misses # 17.41» of all branches
A.805183600 seconds time elapsed

|
© Synopsys 2013 12 SYNOPSYS

How to use perf?

A For profiling, you need to actually record samples to a
file; this is done using:

$ perf record <command>

: in kernel functions may not

[perf record:
[perf record:

ccelerating
novation

© Synopsys 2013 13 SV“UPSYS'

How to use perf?

. _ $ perf report > file.txt
A The result can be obtained with:

mischa@mijonker - ubuntu - d630:~$ cat file.txt

H# ========
$ perf report # captured on: Thu Oct 10 11:45:44 2013
hostname : mjonker - ubuntu - d630
o0s release: 3.8.0 - 31- generic
mischa@mjonker—u_bm # perf version: 3.8.13.8
- # arch : i686

nrcpus online: 2

nrcpus avail : 2

cpudesc : Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz
cpuid : Genuinelntel,6,15,13

total memory : 2055272 kB

cmdline :/ usr /bin/perf_3.8.0 - 31 record ./copy

event : name = cycles, type = 0, config = 0x0, configl =

0x0, config2 = 0x0, excl usr =0, excl kern =0, excl host =
0, excl guest =1, precise_ip =0,id={25,26}

HEADER_CPU_TOPOLOGY info available, use - | to display

pmu mappings: cpu =4, software =1, tracepoint =2,
breakpoint = 5

H# ========

#

Samples: 722 of event ‘cycles'
Event count (approx.): 381229490

#

Overhead Command Shared Object Symbol

.

#
99.04% copy copy [.] main
0.90% copy [kernel.kallsyms] [K] Oxc103c198
0.05% copy Id -2.17.s0 [.] 0x0000e360

ccelerating
novation

SYNOPSYs

How to use perf?

A To enable kernel symbol resolution, you can do the
following (as root!!) before starting perf record

#echo 0>/ proc /sys/kernel/ kptr_restrict

root@ mjonker-ubuntu-d630: fhome/mischa -[-:' W= |ﬁ]

Sample=: 668 of event 'cycles', Event count [approx.): 3627268961
copy copy [.] main

SYNoPsSys* “2H

How to use perf?

A To enable kernel symbol resolution, you can do the
following (as root!!) before starting perf record

#echo 0>/ proc /sys/kernel/ kptr_restrict

rer mischa@mjonker-ubuntu-d630:

Event count (approx.): I
[.] main

8d
feb=x, Tebx

[1 native_write msr s
O0x0 (Fes=i) , Fesi
Oxlc (%esp), Fed=x
Oxlc (%esp), Fecx
fecx, (3ebx, Fed=x, 4)
fed=x, Tedx

fecx, Tecx

e mischa@mjoenker-ubuntu-d630:

lennocace mazn
Zoom into copy({3981) thread
Zoom into copy DSO
Browse map details
1 ripts for samples of threas
cripts for samples of symbo.
cripcts for all samples

CInD S0x40000, Fed=x

mow feax, (Fedi, Fecx, 4)

5 Jne 50

P TP TP TP TP 1 P 1 P 1P o | P o | O o 1P o 1 P o 1 P o 1 P P TP 1Y

mow Oxlc (%esp), Fed=x
=ub 50x1, %es=si

mow (Fedi, Fedx,4) , Fedx
mow fedx, 0xlc (fesp)

5 jne 40

help on key bindings

. SYNOPSYS" —Hi

How to use perf?

A To get a better idea of what C code is responsible,
compile your program with TO0 T g
i Thatos i ntrusive though

i mischa@mjonker-ubuntu-d630: -

=
copy

> 50% of
cycles spent in
one instruction!

© Synopsys 2013 17 SYNOPSYS" At

How to use perf?

A By default, perffus es.-t he 6c¢cycl esd eve
frequency = 4 kHz
AWe can use 10006s of different

i e.g.totrigger a sample for every n'".D$ load miss, record like-this:
I perf record 71ell~dcache -load - misses -i'c n<command>

I Useperf Ilist togeta listof events

A Note that cache misses are not time-based events:

I if a frequency is specified; the frequency is used as a'guideline to
determine the sampling interval.

© Synopsys 2013 18 SYNOPSYS" At

How to use perf?

A

Looking at L1 D$ load misses:
i one instruction responsible for > 80% of D$ Id misses!

) . _ﬁ
mischa@mjonker-ubuntu-de30: ~

s [y foe e s [e e o [[

Note: this is on x86 architecture, which
already does quite some speculative
prefetching on its own, and has large
cache sizes

SO [[PO [Us [F0 [Us [0 URNOD

SYNOPSYS orie

speedA4

Need for prefetching

A Performance of any benchmark that uses data sets >> D$ size
drops (dramatically) when memory latency increases

A Example: Network benchmarks (Iterations/s/MHz for various memory latencies),

ospfv2 and routelookupd on 6t wuse a | ot of memory, the
4
3.5
3
2.5
networking_ip_reassembly
2 = networking_nat
networking_ospfv2
15 networking_routelookup
1
0.5
cycles latencyA4
O T T T T 1
0 50 100 150 200 250

o os S‘/I‘IUP

speedA4

Need for prefetching

A Performance of any benchmark that uses data sets >> D$ size
drops (dramatically) when memory latency increases

A Example: Network benchmarks (Iterations/s/MHz for various memory latencies),

ospfv2 and routelookupd on 6t wuse a | ot of memory, the
4
3.5
3
2.5
networking_ip_reassembly
B T T networking_nat
More than 50% networking_ospfv2
1.5 networking_routelookup
at 75 cycles ltcy
1
0.5
cycles latencyA4
0 T T T T 1
0 50 100 150 200 250

emoaeos ot synnP

speedA4

Need for prefetching

Memory latency causes
stall cycles

A Plain memcpy shows even more
performance degradation with
Increasing memory latency

memcpy S
1.8 O
=2
D
1.6 —
\ .. S -
1.4 D
\ 5
1.2 =h
\ More than 67% =
1
0.8
0.6
04"] "\.\.\.3.— In reality can happen for both
0.2 load and store, due to
0 | | | cycles latency4 allocate on write
0 50 100 150 200 250 cache line allocation policy

© Synopsys 2013 22 SY“UP

What Is prefetching?

load [0x00]
preftch [0x10]

sltorcelz [[(())xgi)]] § store [0x00]
Sl = load [0x04]
store [Ox04] 9]
Nl store [Ox04]
load:|0x08) > load [0x08]
store [0x08] @
— store [0x08]
A e, load [0X0C]
store [Ox0C] =
load 10x10 store [Ox0C]
- St[al’l‘] load [0X10]
Q stall o preftch [0x20]
9] stall g store [0x10]
5 stall =3 load [0x14]
‘_'2 stall SN store [0x14]
@ stall o load [0x18]
= store [0x10] @ store [0x18]
= load [Ox1C]

load [Ox14] — store [0x1C

store [0x14] | |

load [0x18]

store [0x18]

load [Ox1C

store [[o)>(<1c]] Example of imaginary system with 16 byte cache lines

© Synopsys 2013 23 Syn[]

What iIs prefetching? (2)

© Synopsys 2013

24

|11 3ul| ayoed

|[112] 3ul| ayoed

load [0x00]
preftch [0x10]
store [0x00]
load [0x04]
store [0x04]
load [0x08]
store [0Ox08]
load [OxOC]
store [Ox0C]
load [0x10]
preftch [0x20]
store [0x10]
load [0x14]
store [0x14]
load [0x18]
store [0x18]
load [Ox1C]
store [0x1C]

Multiple ways of prefetching

A HW assisted

A CPU tries to recognize patterns,
and speculatively fetch more data
than requested from memory

A Compiler assisted

A Compiler tries to recognize
patterns, and inserts prefetch
instructions into the code

A Manually (using profiling)

A SW developer inserts prefetch
instructions manually, based on
profiling or specific knowledge
about an algorithm

Compiler assisted prefetching

Using GCC to generate prefetch instructions

long *copy (long * dest ,long* src, Int size)
{

int i ;

for L =0 | <sjze: [++

-4,r2

a: 004 mov_s r3,r0
1c: 0a 248070 mov Ip_count,r2

20: a8208001 Ip 2c <copy+0x2c>
24: 04110202 Id.a r2,[r1,4]
28: 04 1b 90 00 stab r2,[r3,4]
2c: e07e i_S [blink]

© Synopsys 2013 25 SYNOPSYS

