
© Synopsys 2013 1

Fighting latency

How to optimize your system using perf

Mischa Jonker

October 24th, 2013

© Synopsys 2013 2

Contents

Å Introduction

ï Processor trends; what kind of latency are we fighting?

ÅWhat is perf?

ÅUsing perf to identify bottlenecks

ÅPrefetching

ÅUsing GCC options to tune prefetching

© Synopsys 2013 3

Processor trends
Old problems, but now in embedded CPUôs

Fetch Align Decode Operands Execute Commit
Write
back

0 5 10 15 20 25 30

cycles per
instruction

cycle time

time per
instruction

Pipeline stages Ą

ÅTo get more performance,

processors get deeper

pipelines

ï Split the work load in

multiple stages, so time per

cycle gets shorter

Fetch Decode Execute
Write
back

Fetch Execute

Deeper
pipelines

© Synopsys 2013 4

Causes of a high CPI

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

<do something else>

Fetch Align Decode Operands Execute Commit
Write
back

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

Example: simplified memcpy loop in assembly

ï The branch at the end of the loop is

predicted taken, so the CPU can keep on

filling pipeline stages

© Synopsys 2013 5

Causes of a high CPI (2)

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

<do something else>

Fetch Align Decode Operands Execute Commit
Write
back

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

1: ld r1, [r2]

sub.f r0, r0, 1

st r1, [r3]

add r2, r2, 4

add r3, r3, 4

bnz 1b

<do something else>

Pipeline bubble / latency

Example: simplified memcpy loop in assembly

ï If the branch is not taken / mispredicted,

the pipeline needs to be flushed and a

different instruction needs to be fetched!

© Synopsys 2013 6

Processor trends
How to keep CPI low?

0 5 10 15 20 25 30

cycles per
instruction

cycle time

time per
instruction

Pipeline stages Ą

0 5 10 15 20 25 30

Pipeline stages Ą

ÅVarious ways to keep CPI low:

ï Do multiple instructions at once (super-scalar)

ï To decrease the penalty of branch mispredicts, we can

speculatively start with execution of both paths;

ÅHowever, this costs power and area (# of transistors)

ï Can we do better?

© Synopsys 2013 7

Memory latency
Old problems, but now in embedded CPUôs (2)

ÅMemory latency is decreasing, but CPU speeds are

increasing at a faster rate

ï Now memory is also bottleneck for embedded CPUôs

ï Latency increases further with multiple cores

0

10

20

30

40

50

60

70

80

90

100

1980 1985 1990 1995 2000 2005 2010 2015

memory access time (random access) time of one CPU clock cycle (PC)

time of one CPU clock cycle (embedded)

n
s
 Ą

© Synopsys 2013 8

CPU core

Memory latency

Execution

unit

L1 I$

L1 D$ 1-3

cycles
5-10 cycles

Level 2

caches

External DDR memory

System bus

Memory controller

5
0
-1

0
0
 c

y
c
le

s

External storage

(NAND or hard drive) >> 25e3 cycles

ÅA cache miss in both caches

could cause the CPU to sit idle

for > 50 cycles

© Synopsys 2013 9

What is perf?

ÅOriginally Performance Counters

for Linux (PCL)

ï Counts HW events (cache misses,

pipeline stalls, etc.)

ï Uses kernel infrastructure, no

instrumentation required, low

overhead

ï Renamed to perf events in 2009

when it became more generic

ÅUsed to optimize the software for

the ATLAS detector that found the

Higgs particle

© Synopsys 2013 10

What is perf?

ÅTwo modes:

ï Statistics: just count events

ï Profiling: for every nth event, record PC

HW events

ÅStall cycles

ÅD$ misses

ÅTLB reloads

ÅBranch
mispredicts

SW events

ÅPage faults

ÅContext switches

ÅClock (interval
timer)

Trace points
(needs root!)

ÅSpecific system
calls

ÅVarious file
system hooks

ÅEtc.

Needs root!

include/trace/events/*.h for examples

© Synopsys 2013 11

How to use perf?

ÅPrerequisites:

ï Perf tools in your rootfs

ï For instance, using Buildroot, enable BR2_PACKAGE_PERF

ï Kernel with Perf enabled

ï Enable CONFIG_PERF_EVENTS

ï For trace points, CONFIG_TRACEPOINTS needs to be enabled.

This is selected through various kernel config option combinations:

ï CONFIG_FTRACE and CONFIG_FUNCTION_TRACER;

ï CONFIG_FTRACE and CONFIG_ENABLE_DEFAULT_TRACERS;

ï CONFIG_KPROBE_EVENT

© Synopsys 2013 12

How to use perf?

Å It has a git-like command interface

ÅTo just get statistics, without profile, you can use:

$ perf stat <command>

© Synopsys 2013 13

How to use perf?

ÅFor profiling, you need to actually record samples to a

file; this is done using:

$ perf record <command>

© Synopsys 2013 14

How to use perf?

ÅThe result can be obtained with:

$ perf report

$ perf report > file.txt

mischa@mjonker - ubuntu - d630:~$ cat file.txt

========

captured on: Thu Oct 10 11:45:44 2013

hostname : mjonker - ubuntu - d630

os release : 3.8.0 - 31- generic

perf version : 3.8.13.8

arch : i686

nrcpus online : 2

nrcpus avail : 2

cpudesc : Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz

cpuid : GenuineIntel,6,15,13

total memory : 2055272 kB

cmdline : / usr /bin/perf_3.8.0 - 31 record ./copy

event : name = cycles, type = 0, config = 0x0, config1 =

0x0, config2 = 0x0, excl_usr = 0, excl_kern = 0, excl_host =

0, excl_guest = 1, precise_ip = 0, id = { 25, 26 }

HEADER_CPU_TOPOLOGY info available, use - I to display

pmu mappings: cpu = 4, software = 1, tracepoint = 2,

breakpoint = 5

========

Samples: 722 of event 'cycles'

Event count (approx.): 381229490

Overhead Command Shared Object Symbol

........

 99.04% copy copy [.] main

 0.90% copy [kernel.kallsyms] [k] 0xc103c198

 0.05% copy ld - 2.17.so [.] 0x0000e360

© Synopsys 2013 15

How to use perf?

ÅTo enable kernel symbol resolution, you can do the
following (as root!!) before starting perf record

 # echo 0 > / proc /sys/kernel/ kptr_restrict

© Synopsys 2013 16

How to use perf?

ÅTo enable kernel symbol resolution, you can do the
following (as root!!) before starting perf record

 # echo 0 > / proc /sys/kernel/ kptr_restrict

© Synopsys 2013 17

How to use perf?

ÅTo get a better idea of what C code is responsible,

compile your program with ïO0 ïg

ï Thatôs intrusive though

> 50% of

cycles spent in

one instruction!

© Synopsys 2013 18

mischa@mjonker - ubuntu - d630:~$ perf list

List of pre - defined events (to be used in - e):

 cpu - cycles OR cycles [Hardware event]

 instructions [Hardware event]

 cache - references [Hardware event]

 cache - misses [Hardware event]

 branch - instructions OR branches [Hardware event]

 branch - misses [Hardware event]

 bus - cycles [Hardware event]

 stalled - cycles - frontend OR idle - cycles - frontend [Hardware event]

 stalled - cycles - backend OR idle - cycles - backend [Hardware event]

 ref - cycles [Hardware event]

 cpu - clock [Software event]

 task - clock [Software event]

 page - faults OR faults [Software event]

 context - switches OR cs [Software event]

 cpu - migrations OR migrations [Software event]

 minor - faults [Software event]

 major - faults [Software event]

 alignment - faults [Software event]

 emulation - faults [Software event]

 L1- dcache - loads [Hardware cache event]

 L1- dcache - load - misses [Hardware cache event]

 L1- dcache - stores [Hardware cache event]

 L1- dcache - store - misses [Hardware cache event]

 L1- dcache - prefetches [Hardware cache event]

 L1- dcache - prefetch - misses [Hardware cache event]

 L1- icache - loads [Hardware cache event]

 L1- icache - load - misses [Hardware cache event]

 L1- icache - prefetches [Hardware cache event]

 L1- icache - prefetch - misses [Hardware cache event]

 LLC- loads [Hardware cache event]

 LLC- load - misses [Hardware cache event]

 LLC- stores [Hardware cache event]

 LLC- store - misses [Hardware cache event]

 LLC- prefetches [Hardware cache event]

 LLC- prefetch - misses [Hardware cache event]

 dTLB- loads [Hardware cache event]

 dTLB- load - misses [Hardware cache event]

 dTLB- stores [Hardware cache event]

 dTLB- store - misses [Hardware cache event]

 dTLB- prefetches [Hardware cache event]

How to use perf?

ÅBy default, perf uses the ócyclesô event, with sampling

frequency = 4 kHz

ÅWe can use 100ôs of different events for sampling;

ï e.g. to trigger a sample for every nth D$ load miss, record like this:

ï perf record ïe L1 - dcache - load - misses ïc n <command>

ï Use perf list to get a list of events

ÅNote that cache misses are not time-based events:

ï if a frequency is specified, the frequency is used as a guideline to

determine the sampling interval.

© Synopsys 2013 19

mischa@mjonker - ubuntu - d630:~$ perf list

List of pre - defined events (to be used in - e):

 cpu - cycles OR cycles [Hardware event]

 instructions [Hardware event]

 cache - references [Hardware event]

 cache - misses [Hardware event]

 branch - instructions OR branches [Hardware event]

 branch - misses [Hardware event]

 bus - cycles [Hardware event]

 stalled - cycles - frontend OR idle - cycles - frontend [Hardware event]

 stalled - cycles - backend OR idle - cycles - backend [Hardware event]

 ref - cycles [Hardware event]

 cpu - clock [Software event]

 task - clock [Software event]

 page - faults OR faults [Software event]

 context - switches OR cs [Software event]

 cpu - migrations OR migrations [Software event]

 minor - faults [Software event]

 major - faults [Software event]

 alignment - faults [Software event]

 emulation - faults [Software event]

 L1- dcache - loads [Hardware cache event]

 L1- dcache - load - misses [Hardware cache event]

 L1- dcache - stores [Hardware cache event]

 L1- dcache - store - misses [Hardware cache event]

 L1- dcache - prefetches [Hardware cache event]

 L1- dcache - prefetch - misses [Hardware cache event]

 L1- icache - loads [Hardware cache event]

 L1- icache - load - misses [Hardware cache event]

 L1- icache - prefetches [Hardware cache event]

 L1- icache - prefetch - misses [Hardware cache event]

 LLC- loads [Hardware cache event]

 LLC- load - misses [Hardware cache event]

 LLC- stores [Hardware cache event]

 LLC- store - misses [Hardware cache event]

 LLC- prefetches [Hardware cache event]

 LLC- prefetch - misses [Hardware cache event]

 dTLB- loads [Hardware cache event]

 dTLB- load - misses [Hardware cache event]

 dTLB- stores [Hardware cache event]

 dTLB- store - misses [Hardware cache event]

 dTLB- prefetches [Hardware cache event]

How to use perf?

ÅLooking at L1 D$ load misses:

ï one instruction responsible for > 80% of D$ ld misses!

Note: this is on x86 architecture, which

already does quite some speculative

prefetching on its own, and has large

cache sizes

© Synopsys 2013 20

Need for prefetching

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

networking_ip_reassembly

networking_nat

networking_ospfv2

networking_routelookup

Å Performance of any benchmark that uses data sets >> D$ size

drops (dramatically) when memory latency increases

Å Example: Network benchmarks (Iterations/s/MHz for various memory latencies),

ospfv2 and routelookup donôt use a lot of memory, the other two do

cycles latencyĄ

s
p

e
e

d
Ą

© Synopsys 2013 21

Need for prefetching

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

networking_ip_reassembly

networking_nat

networking_ospfv2

networking_routelookup

Å Performance of any benchmark that uses data sets >> D$ size

drops (dramatically) when memory latency increases

Å Example: Network benchmarks (Iterations/s/MHz for various memory latencies),

ospfv2 and routelookup donôt use a lot of memory, the other two do

More than 50%

performance drop

at 75 cycles ltcy

cycles latencyĄ

s
p

e
e

d
Ą

© Synopsys 2013 22

Need for prefetching

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250

memcpy

memcpy

Å Plain memcpy shows even more

performance degradation with

increasing memory latency

cycles latencyĄ

s
p

e
e

d
Ą

More than 67%

performance drop

at 75 cycles ltcy

load
store
load
store
load
store
load
store
load
store
load
store
load
store
load
store

load
store

stall
stall

load
store
load

stall
stall
stall
stall
store
load
store
load
store

c
a
c
h
e
 lin

e
 re

fill

Memory latency causes

stall cycles

In reality can happen for both

load and store, due to

allocate on write

cache line allocation policy

© Synopsys 2013 23

load [0x00]

store [0x00]
load [0x04]
store [0x04]
load [0x08]
store [0x08]
load [0x0C]
store [0x0C]
load [0x10]

store [0x10]
load [0x14]
store [0x14]
load [0x18]
store [0x18]
load [0x1C]
store [0x1C]

preftch [0x10] c
a
c
h
e
 lin

e
 re

fill
preftch [0x20] c

a
c
h
e
 lin

e
 re

fill
stall

c
a
c
h
e
 lin

e
 re

fill

store [0x00]
load [0x04]
store [0x04]
load [0x08]
store [0x08]
load [0x0C]
store [0x0C]
load [0x10]

store [0x10]
load [0x14]
store [0x14]
load [0x18]
store [0x18]
load [0x1C]
store [0x1C]

stall
stall
stall
stall
stall

stall
stall

c
a
c
h
e
 lin

e
 re

fill

What is prefetching?

Example of imaginary system with 16 byte cache lines

© Synopsys 2013 24

load [0x00]

store [0x00]
load [0x04]
store [0x04]
load [0x08]
store [0x08]
load [0x0C]
store [0x0C]
load [0x10]

store [0x10]
load [0x14]
store [0x14]
load [0x18]
store [0x18]
load [0x1C]
store [0x1C]

preftch [0x10] c
a
c
h
e
 lin

e
 re

fill

preftch [0x20] c
a
c
h
e
 lin

e
 re

fill

stall

c
a
c
h
e
 lin

e
 re

fill

store [0x00]
load [0x04]
store [0x04]
load [0x08]
store [0x08]
load [0x0C]
store [0x0C]
load [0x10]

store [0x10]
load [0x14]
store [0x14]
load [0x18]
store [0x18]
load [0x1C]
store [0x1C]

stall
stall
stall
stall
stall

stall
stall

c
a
c
h
e
 lin

e
 re

fill

What is prefetching? (2)

Å HW assisted
Å CPU tries to recognize patterns,

and speculatively fetch more data

than requested from memory

Å Compiler assisted
Å Compiler tries to recognize

patterns, and inserts prefetch

instructions into the code

Å Manually (using profiling)
Å SW developer inserts prefetch

instructions manually, based on

profiling or specific knowledge

about an algorithm

Multiple ways of prefetching

© Synopsys 2013 25

Compiler assisted prefetching
Using GCC to generate prefetch instructions

long *copy (long * dest , long * src , int size)

{

 int i ;

 for (i = 0; i < size; i ++) {

 dest [i] = src [i];

 }

 return dest ;

}

00000000 <copy>:

 0: 2d 0a 72 00 brlt.d r2,1,2c <copy+0x2c>

 4: 42 21 01 01 sub r1,r1,4

 8: 15 26 82 70 ff ff fc ff add2 r2, - 4,r2

 10: 2f 22 82 00 lsr r2,r2

 14: 2f 22 82 00 lsr r2,r2

 18: 44 71 add_s r2,r2,1

 1a: 00 43 mov_s r3,r0

 1c: 0a 24 80 70 mov lp_count,r2

 20: a8 20 80 01 lp 2c <copy+0x2c>

 24: 04 11 02 02 ld.a r2,[r1,4]

 28: 04 1b 90 00 st.ab r2,[r3,4]

 2c: e0 7e j_s [blink]

