
Porting GNU Radio to
Multicore DSP+ARM SoC

A Purely Open Source Approach

Shenghou Ma, Vuk Marojevic, and Jeffrey H. Reed, Virginia Tech
Philip Balister, OpenSDR

Who Am I?

● Maintainer of meta-sdr OpenEmbedded layer
● Work on products such as the USRP-E100
● GSoC mentor for embedded GNU Radio
● Helps develop enabling technology for hacking

the IoT!

Motivation

● Vendor-specific development tools are only
available on PC-based platforms

● Little influence from research community
● SDR is influenced by open source
● Open-source used in research and education

Contents

● Context

● Hardware Description

● Vision

● Analysis, Evaluation and Contribution

● Conclusion

Trends in Wireless
● Coexistence and Interoperability
● Spectrum Sharing
● High Complexity and Capacity Demand for Radio

Interface and Backhaul
● Infrastructure/Computing Sharing/Outsourcing

→ need development environment leveraging creativity,
efficiency, adaptability and scalability

Wireless Development Issues
● Algorithm development cost (low level of outsourcing)
● Hardware architecture dependency (new computing

demands subject to vendor upgrades)
● Low software and hardware reusability
● Long time-to-market for new wireless comm. systems
● Short mobile terminal life-cycle

Software-Defined Radio
Digital signal processing application that defines the
radio functionality of a transceiver as software running
on reconfigurable hardware

Hard real-time processing

Tradeoff between flexibility and processing performance
and power consumption →

Heterogeneous Multiprocessing

GNU Radio - A Community Resource
● Free software development tools for building

software radios, http://gnuradio.org
● Environment for rapid prototyping and testing of

SDR modules, waveforms, resource management
algorithms, cognitive radio methods, …

● Library of configurable SDR modules, signal source,
measurement and visualization tools, …

● Provide access to RF-front ends

http://gnuradio.org/

Software Environment

Modules and Graphs

GNU Radio Companion (GRC)

TI’s KeyStone II:
Multi-core ARM+DSP SoC

KeyStone II EVM

USIMUSB3.0 2xPCIe 4x1GBE 2x10GBE

KeyStone II: TCI6638K2K

Major Components
● 4 ARMs Cortex A15 @ 1.4 GHz
● 8 C66x DSP cores @ 1.2 GHz:

○ 38.4 GMACs/Core or 19.2 GFLOPs/Core

● Communications accelerators
○ 2 FFT, 4 Turbo Decoders, 8 Viterbi Decoder, ...

● High-Speed Interfacing
● Multicore Navigator
● 6 MB Shared SRAM, 1 MB L2 Cache/RAM for each core

Vision and Related Work

Vision
Three milestones:
1. Distribute work to other machines with the

same architecture.
2. Separate block processing code out and re-

implement in a common language
3. Unified Scheduler for heterogeneous

architectures!

Related Work

● Al Fayez’s gr-DSP (C64x, DSPBIOS)

● RSP2011: Applying GPU to SDR

● FPL2013: GReasy (GNU Radio blocks on

FPGA)

● GRCon2013: Using DSPs in GNU Radio

Digital Signal Processor for SDR

Proprietary
software tools

open-source era … sharing … community support

Linux on
embedded ARMs

GNU Radio on
embedded ARMs

Integrated execution
environment

DSP as
accelerators

DSP as complete
systems

Rapid prototyping Rapid reconfiguration
→ CR, DSA, ...

...Education, Research and Rapid Waveform Development and Deployment

Eventually...

System Analysis,
Evaluation and

Contribution

Memory Organization

● both ARM and DSP has 2 level of caches
● ARM caches could be flexibly configured as

cache-only, SRAM-only or a mix of the two
● 6MB of shared memory on chip
● No consistency between DSP caches and

between DSP caches and ARM caches

Communication Issues

Streaming vs. Shared Memory?
GRDSP and GRGPU both stream data over PCI-E (no other choice)
GReasy streams over Ethernet.
GR on Zynq in GSOC 2013 streams over AXI-Stream.

On the KeyStone II SoC, Sharing (on-chip)
memory is perfectly fine and efficient.

System Architecture

More details on interactions

Linux has framework for co-processors
(remoteproc) and it’s used in Android.

○ Launch a hardware thread on to a coproc.
○ use UIO (user-space IO) to get the inter-core

interrupt (already supported in kernel for the board)

Scheduler

● lack of MMUs in DSP
● No cache coherence between DSP cores
● Need for centralized scheduler
● DSP cores as specialized threads
● Extendable to other accelerators (e.g. FPGAs)

DSP w/o Proprietary Software
Just a couple register writes, isn’t it?
The troubles:
● No visibility of what the DSP is doing (no debugger)
● Lack of detailed documentation, TI assumes you

are using DSPBIOS and its Linux drivers
● Complex clock domains and power control

Evaluations

gcc 4.8.2 c674x backend is generally good, but:
float fir(int N, float coef[], float samples[]) {

float r = 0.0f;

int i;

for (i = 0; i < N; i++)

r += samples[i] * coef[i];

return r;

}

fir:

cmplt .l1 0, A4, A0

|| shl .s1 A4, 2, A3

|| sub .d1 A6, 4, A6

[!A0] b .s1 .L4

|| sub .d1 A3, 4, A4

shru .s1 A4, 2, A5

|| mvk .d1 0, A4

add .d1 A5, 1, A1

nop 3

;; condjump to .L4 occurs

.L3:

ldw .d2t1 *B4++[1], A7

|| sub .d1 A1, 1, A1

ldw .d1t1 *++A6[1], A8

nop 4

mpysp .m1 A7, A8, A9

nop 1

[A1] b .s1 .L3

nop 1

addsp .l1 A4, A9, A4

nop 3

;; condjump to .L3 occurs

ret .s2 B3

nop 5

;; return occurs

.L4:

ret .s2 B3

|| mvk .d1 0, A4

nop 5

;; return occurs

perfect candidate for software
pipeline, but gcc doesn’t support
SPLOOP!

What is Available

● binutils-2.23.2/gcc-4.8.2 based C674 toolchain
(compatible with C66x)

● (partial) libc and libm

● liquid-dsp for DSP cores, replaces TI’s DSPLIB

● ARM lib to control DSP cores

http://github.com/GRDSP

http://github.com/GRDSP
http://github.com/GRDSP

What is in Progress

1. Remoteproc support for DSP cores.

2. Could we extend ORC/Volk to cover DSP?

3. Rewrite more blocks.

4. Support more platforms
a. FPGAs
b. embedded GPUs (e.g. Mali, and other vendors’)

How to Contribute

URL: http://github.com/GRDSP
Create issues on the GitHub project.

Contact: Shenghou Ma, minux@vt.edu

Open-source contributions welcome

http://github.com/GRDSP
mailto:minux@vt.edu

References
● A Standalone Package for Bringing Graphics Processor Acceleration to GNU Radio:

GRGPU, http://gnuradio.org/redmine/ attachments/download/257/06-plishker-grc-grgpu.pdf,
2011.

● W. Plishker, G.F. Zaki, S.S. Bhattacharyya, C. Clancy, and J. Kuykendall, “Applying
graphics processor acceleration in a software defined radio prototyping environment,” in
22nd IEEE International Symposium on Rapid System Prototyping (RSP), 2011, pp. 67–73.

● Using Digital Signal Processors in GNU Radio, GRCon 2013, http://www.trondeau.
com/storage/grcon13_presentations/grcon13_ford_snl_dsps.pdf

● A. Love and P. Athanas, “Rapid modular assembly of Xilinx FPGA designs,” in 2013 23rd
International Conference on Field Programmable Logic and Applications (FPL), 2013

● KeyStone Arch. Multicore Navigator, http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf
● C66x DSP Cache User Guide, http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf

http://gnuradio.org/redmine/
http://www.trondeau.com/storage/grcon13_presentations/grcon13_ford_snl_dsps.pdf
http://www.trondeau.com/storage/grcon13_presentations/grcon13_ford_snl_dsps.pdf
http://www.trondeau.com/storage/grcon13_presentations/grcon13_ford_snl_dsps.pdf
http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf
http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf

