Porting GNU Radio to Multicore DSP+ARM SoC

A Purely Open Source Approach

Shenghou Ma, Vuk Marojevic, and Jeffrey H. Reed, Virginia Tech Philip Balister, OpenSDR

Who Am I?

- Maintainer of meta-sdr OpenEmbedded layer
- Work on products such as the USRP-E100
- GSoC mentor for embedded GNU Radio
- Helps develop enabling technology for hacking the IoT!

Motivation

- Vendor-specific development tools are only available on PC-based platforms
- Little influence from research community
- SDR is influenced by open source
- Open-source used in research and education

Contents

- Context
- Hardware Description
- Vision
- Analysis, Evaluation and Contribution
- Conclusion

Trends in Wireless

- Coexistence and Interoperability
- Spectrum Sharing
- High Complexity and Capacity Demand for Radio Interface and Backhaul
- Infrastructure/Computing Sharing/Outsourcing

→ need development environment leveraging creativity, efficiency, adaptability and scalability

Wireless Development Issues

- Algorithm development cost (low level of outsourcing)
- Hardware architecture dependency (new computing demands subject to vendor upgrades)
- Low software and hardware reusability
- Long time-to-market for new wireless comm. systems
- Short mobile terminal life-cycle

Software-Defined Radio

Digital signal processing application that defines the radio functionality of a transceiver as software running on reconfigurable hardware

Hard real-time processing

Tradeoff between flexibility and processing performance and power consumption →

Heterogeneous Multiprocessing

GNU Radio - A Community Resource

- Free software development tools for building software radios, http://gnuradio.org
- Environment for rapid prototyping and testing of SDR modules, waveforms, resource management algorithms, cognitive radio methods, ...
- Library of configurable SDR modules, signal source, measurement and visualization tools, ...
- Provide access to RF-front ends

Software Environment

- Python script to control the creation of the waveform and its implementation
- Signal processing components typically programmed in C++
- Scheduler controlling the creation of threads and communication components

UNIX/Linux-based Operating System

Modules and Graphs

GNU Radio Companion (GRC)

Tl's KeyStone II: Multi-core ARM+DSP SoC

KeyStone II EVM

KeyStone II: TCI6638K2K

Major Components

- 4 ARMs Cortex A15 @ 1.4 GHz
- 8 C66x DSP cores @ 1.2 GHz:
 - 38.4 GMACs/Core or 19.2 GFLOPs/Core
- Communications accelerators
 - 2 FFT, 4 Turbo Decoders, 8 Viterbi Decoder, ...
- High-Speed Interfacing
- Multicore Navigator
- 6 MB Shared SRAM, 1 MB L2 Cache/RAM for each core

Vision and Related Work

Vision

Three milestones:

- 1. Distribute work to other machines with the same architecture.
- 2. Separate block processing code out and reimplement in a common language
- 3. Unified Scheduler for heterogeneous architectures!

Related Work

- Al Fayez's gr-DSP (C64x, DSPBIOS)
- RSP2011: Applying GPU to SDR
- FPL2013: GReasy (GNU Radio blocks on FPGA)
- GRCon2013: Using DSPs in GNU Radio

Digital Signal Processor for SDR

...Education, Research and Rapid Waveform Development and Deployment

DSP as accelerators DSP as complete systems

Rapid prototyping

Rapid reconfiguration \rightarrow CR, DSA, ...

open-source era ... sharing ... community support

Proprietary software tools Linux on embedded ARMs

GNU Radio on embedded ARMs

Integrated execution environment

Eventually...

System Analysis, Evaluation and Contribution

Memory Organization

- both ARM and DSP has 2 level of caches
- ARM caches could be flexibly configured as cache-only, SRAM-only or a mix of the two
- 6MB of shared memory on chip
- No consistency between DSP caches and between DSP caches and ARM caches

Communication Issues

Streaming vs. Shared Memory?

GRDSP and GRGPU both stream data over PCI-E (no other choice)

GReasy streams over Ethernet.

GR on Zynq in GSOC 2013 streams over AXI-Stream.

On the KeyStone II SoC, Sharing (on-chip) memory is perfectly fine and efficient.

System Architecture

More details on interactions

Linux has framework for co-processors (remoteproc) and it's used in Android.

- Launch a hardware thread on to a coproc.
- use UIO (user-space IO) to get the inter-core interrupt (already supported in kernel for the board)

Scheduler

- lack of MMUs in DSP
- No cache coherence between DSP cores
- Need for centralized scheduler
- DSP cores as specialized threads
- Extendable to other accelerators (e.g. FPGAs)

DSP w/o Proprietary Software

Just a couple register writes, isn't it?

The troubles:

- No visibility of what the DSP is doing (no debugger)
- Lack of detailed documentation, TI assumes you are using DSPBIOS and its Linux drivers
- Complex clock domains and power control

Evaluations

gcc 4.8.2 c674x backend is generally good, but:

```
float fir(int N, float coef[], float samples[]) {
   float r = 0.0f;
   int i;
   for (i = 0; i < N; i++)
      r += samples[i] * coef[i];
   return r;
}</pre>
```

```
fir:
                                                   nop 4
         cmplt .11 0, A4, A0
                                                             .m1 A7, A8, A9
                                                   mpysp
         shl .s1 A4. 2. A3
                                                   nop 1
         sub .d1 perfect candidate for software
                                               [A1] b .s1 .L3
                  pipeline, but gcc doesn't support
    [!A0]
             b
                 SPLOOP!
                                                   nop 1
         sub .d1 ,, ,, ,,
                                                   addsp
                                                            .11 A4, A9, A4
         shru .s1 A4, 2, A5
                                                   nop 3
         mvk .d1 0, A4
                                               ;; condjump to .L3 occurs
         add .d1 A5, 1, A1
                                                   ret .s2 B3
         nop 3
                                                   nop 5
    ;; condjump to .L4 occurs
                                               ;; return occurs
.L3:
                                          .L4:
         1dw .d2t1 *B4++[1], A7
                                                   ret .s2 B3
         sub .d1 A1, 1, A1
                                                   mvk .d1 0, A4
         ldw .d1t1 *++A6[1], A8
                                                   nop 5
                                               ;; return occurs
```

What is Available

- binutils-2.23.2/gcc-4.8.2 based C674 toolchain (compatible with C66x)
- (partial) libc and libm
- liquid-dsp for DSP cores, replaces TI's DSPLIB
- ARM lib to control DSP cores

http://github.com/GRDSP

What is in Progress

- 1. Remoteproc support for DSP cores.
- 2. Could we extend ORC/Volk to cover DSP?
- 3. Rewrite more blocks.
- 4. Support more platforms
 - a. FPGAs
 - b. embedded GPUs (e.g. Mali, and other vendors')

How to Contribute

URL: http://github.com/GRDSP

Create issues on the GitHub project.

Contact: Shenghou Ma, minux@vt.edu

Open-source contributions welcome

References

- A Standalone Package for Bringing Graphics Processor Acceleration to GNU Radio: GRGPU, http://gnuradio.org/redmine/attachments/download/257/06-plishker-grc-grgpu.pdf, 2011.
- W. Plishker, G.F. Zaki, S.S. Bhattacharyya, C. Clancy, and J. Kuykendall, "Applying graphics processor acceleration in a software defined radio prototyping environment," in 22nd IEEE International Symposium on Rapid System Prototyping (RSP), 2011, pp. 67–73.
- Using Digital Signal Processors in GNU Radio, GRCon 2013, http://www.trondeau.com/storage/grcon13 presentations/grcon13 ford snl dsps.pdf
- A. Love and P. Athanas, "Rapid modular assembly of Xilinx FPGA designs," in 2013 23rd International Conference on Field Programmable Logic and Applications (FPL), 2013
- KeyStone Arch. Multicore Navigator, http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf
- C66x DSP Cache User Guide, http://www.ti.com/lit/ug/sprugr9f/sprugr9f.pdf