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Who I am
• Senior Software Engineer at 

NASA’s Jet Propulsion 
Laboratory
• Projects
• Deep Space Network
• Cassini
• Curiosity
• Ingenuity

• FSW lead
• Operations lead

• Architect of F Prime
• Helped advance Linux at JPL



Ingenuity Mars Helicopter
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Mars Helicopter System 
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Mars Helicopter Block Diagram
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Mars Helicopter Operating System and Software

• Linux
• Linaro 3.4.0
• Linux/Android hybrid
• PREEMPT patch (No RT patch!)
• BSP provided by 

Qualcomm/Intrinsyc
• Camera drivers included with 

BSP
• Modified to “pulse” camera 

interface with FPGA to time-
stamp images

• Linux kernel driver interface for 
I/O in BSP

• Helicopter application is fully 
userspace
• Runs as root
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Helicopter Application
• Uses F Prime open-source flight 

software framework
• https://github.com/nasa/fprime

• Tinker-toy style component 
architecture
• Inherits code from previous JPL 

missions
• Shares code internally
• Broadcasts real-time data via 

radio and stores higher rate 
telemetry to file after each flight
• 6 redundant copies with 

checksums started by upstart 
scripts
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How do we use Linux besides the application?
• We have a command to invoke 

arbitrary commands on the Linux 
command line.
• Uses stdlib system() API call

• We have used it to:
• Compress log files (bzip2)
• Checksum files (md5sum)
• List files (ls)
• Remove older files (rm)
• Run bash shell for various cleanup tasks

• Use “taskset –c” to select which core 
to use
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How busy is the system?

Flight Logs to eMMC
bzip2!

• Core 0
• Data handling and 

logging
• Telecom
• Device I/O

• Core 1
• Cameras

• Core 2
• Visual processing
• Image logging
• Data routing to 

MCU
• Core 3

• Guidance/Naviga-
tion processing
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Perseverance Rover EDL Cameras

• Perseverance Rover also had Linux-
based landing camera system
• Not involved in guidance, just 

recorded landing

• Ruggedized Intel Atom PC
• More like a conventional PC

• USB cameras
• USB cabling with hubs throughout 

vehicle
• FTDI to rover interface UART

• Linux x86 kernel 4.15.7
• Used much open-source including 

ffmpeg and Python
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EDL Camera Functional Block Diagram
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EDLCAM Sensors
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EDLCAM Support Hardware
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Conclusions
• Linux boosted our ability to develop quickly

• We had standard I/O drivers
• Manufacturer BSP was available
• Shell/adb interface made testing much easier
• COTS facilities like Wi-Fi, USB and standard I/O made test support equipment 

*much* easier
• Allowed early prototyping on other platforms like Raspberry Pi

• Linux did very well, as long as you were aware of its limitations
• Not real time, so built in robustness to slips

• RT patch probably would have been better, but not available on our kernel
• Avoid file I/O during performance critical times
• Build in file-system level protections (ex. read-only partitions for software/Linux 

executables)
• Future of Linux in space exploration is rosy!


