

Linux on Mars

Who I am

- Senior Software Engineer at NASA's Jet Propulsion Laboratory
- Projects
 - Deep Space Network
 - Cassini
 - Curiosity
 - Ingenuity
 - FSW lead
 - Operations lead
- Architect of F Prime
- Helped advance Linux at JPL

Ingenuity Mars Helicopter

Mars Helicopter System

Mars Helicopter Block Diagram

Mars Helicopter Operating System and Software

• Linux

- Linaro 3.4.0
- Linux/Android hybrid
- PREEMPT patch (No RT patch!)
- BSP provided by Qualcomm/Intrinsyc
- Camera drivers included with BSP
 - Modified to "pulse" camera interface with FPGA to timestamp images
- Linux kernel driver interface for space I/O in BSP
- Helicopter application is fully userspace
 - Runs as root

User

space

Kernel

Helicopter Application

- Uses F Prime open-source flight software framework
 - https://github.com/nasa/fprime
- Tinker-toy style component architecture
- Inherits code from previous JPL missions
- Shares code internally
- Broadcasts real-time data via radio and stores higher rate telemetry to file after each flight
- 6 redundant copies with checksums started by upstart scripts

How do we use Linux besides the application?

- We have a command to invoke arbitrary commands on the Linux command line.
 - Uses stdlib system() API call
- We have used it to:
 - Compress log files (bzip2)
 - Checksum files (md5sum)
 - List files (ls)
 - Remove older files (rm)
 - Run bash shell for various cleanup tasks
- Use "taskset –c" to select which core to use

SnapdragonCpu3Util

How busy is the system?

- Core 0
 - Data handling and logging
 - Telecom
 - Device I/O
- Core 1
 - Cameras
- Core 2
 - Visual processing
 - Image logging
 - Data routing to MCU
- Core 3
 - Guidance/Navigation processing

Perseverance Rover EDL Cameras

- Perseverance Rover also had Linuxbased landing camera system
 - Not involved in guidance, just recorded landing
- Ruggedized Intel Atom PC
 - More like a conventional PC
- USB cameras
 - USB cabling with hubs throughout vehicle
 - FTDI to rover interface UART
- Linux x86 kernel 4.15.7
- Used much open-source including ffmpeg and Python

Computer

USB Hub

USB Cameras

EDL Camera Functional Block Diagram

© 2021 California Institute of Technology. Government sponsorship acknowledged.

EDLCAM Support Hardware

Descent Stage
Mounted USB Hub

Backshell Mounted USB Hub

Descent Stage Data
Storage Unit

Rover Data Storage Unit

Conclusions

- Linux boosted our ability to develop quickly
 - We had standard I/O drivers
 - Manufacturer BSP was available
 - Shell/adb interface made testing much easier
 - COTS facilities like Wi-Fi, USB and standard I/O made test support equipment *much* easier
 - Allowed early prototyping on other platforms like Raspberry Pi
- Linux did very well, as long as you were aware of its limitations
 - Not real time, so built in robustness to slips
 - RT patch probably would have been better, but not available on our kernel
 - Avoid file I/O during performance critical times
 - Build in file-system level protections (ex. read-only partitions for software/Linux executables)
- Future of Linux in space exploration is rosy!