
Linux on Mars

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Tim Canham
Mars Ingenuity Helicopter Flight Software and Operations Lead

Jet Propulsion Laboratory, California Institute of Technology

Who I am
• Senior Software Engineer at

NASA’s Jet Propulsion
Laboratory
• Projects
• Deep Space Network
• Cassini
• Curiosity
• Ingenuity

• FSW lead
• Operations lead

• Architect of F Prime
• Helped advance Linux at JPL

Ingenuity Mars Helicopter

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Mars Helicopter System

Helicopter
Electronics

Base Station
Instrument Payload

“Ginny”

“Percy”

Zigbee Radio

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Mars Helicopter Block Diagram

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Qualcomm Snapdragon
801

4 core, 2.2GHz
2GB RAM,

32 GB eMMC
(Linux)

Sony IMX214 13MP Color

Omnivision OV7251 B&W

MIPI

Zigby
Radio UART

460Kb

MicroSemi ProASIC
3L FPGA

SPI

5MHz

TI TMS570LC4357 MCU
350MHz, 4MB flash,

512KB RAM
(Bare Metal)

UART

920Kb

Motors

SPI
8MHz

GPIOs

GPIOs

Garmin Lidar Lite LRF

Bosch BMI-160
IMU

SPI
8MHz

I2C

muRata SCA100T
inclinometer

SPI
500 KHz

Mars Helicopter Operating System and Software

• Linux
• Linaro 3.4.0
• Linux/Android hybrid
• PREEMPT patch (No RT patch!)
• BSP provided by

Qualcomm/Intrinsyc
• Camera drivers included with

BSP
• Modified to “pulse” camera

interface with FPGA to time-
stamp images

• Linux kernel driver interface for
I/O in BSP

• Helicopter application is fully
userspace
• Runs as root

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Linux Kernel

BSP/Drivers

UART SPI GPIO Camera

Pulse to FPGA

Helicopter Application

Kernel
space

User
space

Helicopter Application
• Uses F Prime open-source flight

software framework
• https://github.com/nasa/fprime

• Tinker-toy style component
architecture
• Inherits code from previous JPL

missions
• Shares code internally
• Broadcasts real-time data via

radio and stores higher rate
telemetry to file after each flight
• 6 redundant copies with

checksums started by upstart
scripts

Helicopter
Cmd Seq Tlm Evr

Prm File
Up

File
Down

Snapdragon

TI MCU

Rate
Grp

File
Mgr

Health

Poly

Buff
Mgr

Pkt
Log

Radio
Driver

Up
link

Down
link

Cam

Pwr Thrm

Thrm GNC Fault

I/O
Drvs

GNC Mtr

I/O
Drv

Flash Prm Fault

IMU Alt

Inc

Rate
Group

Tlm

Tlm
Heli

Shared

Fprime
Inherited

Heli
Unique

© 2021 California Institute of Technology. Government sponsorship acknowledged.

https://github.com/nasa/fprime

How do we use Linux besides the application?
• We have a command to invoke

arbitrary commands on the Linux
command line.
• Uses stdlib system() API call

• We have used it to:
• Compress log files (bzip2)
• Checksum files (md5sum)
• List files (ls)
• Remove older files (rm)
• Run bash shell for various cleanup tasks

• Use “taskset –c” to select which core
to use

© 2021 California Institute of Technology. Government sponsorship acknowledged.

How busy is the system?

Flight Logs to eMMC
bzip2!

• Core 0
• Data handling and

logging
• Telecom
• Device I/O

• Core 1
• Cameras

• Core 2
• Visual processing
• Image logging
• Data routing to

MCU
• Core 3

• Guidance/Naviga-
tion processing

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Perseverance Rover EDL Cameras

• Perseverance Rover also had Linux-
based landing camera system
• Not involved in guidance, just

recorded landing

• Ruggedized Intel Atom PC
• More like a conventional PC

• USB cameras
• USB cabling with hubs throughout

vehicle
• FTDI to rover interface UART

• Linux x86 kernel 4.15.7
• Used much open-source including

ffmpeg and Python

Computer

USB Hub
USB Cameras

EDL Camera Functional Block Diagram

DE
SC
EN
T	
ST
AG
E

RO
VE
R

BA
CK
SH
EL
L

PC
C

HEATSHIELD

DPAM

RCE	B
RCE	A

eBridle

DS/BS Mega Cutter #1

DS/RVR3
Cutter	(5/8”)

Note: Cut interfaces must be
completely de-energized when
wires are cut (guillotine)

Camera	Head

Power	Converter

Existing	M2020	HW

Power
USB3
USB2
ENET
RS422
Analog

MSIA

USB	Hub	1

PUC PUC PUC

DDC

Microphone

Data	Storage	Unit	1
(DSU)

BIP

DPAMUSB	Hub	2

RUC

RDC

1.2Mp 1.2Mp 1.2Mp

1.2Mp

1.2Mp

3.2Mp

MSIA

DPAMRPAM
EDLC DSU Bracket

Data	Storage	Unit	2
(DSU)

© 2021 California Institute of Technology. Government sponsorship acknowledged.

EDLCAM Sensors

Parachute
Uplook
Cameras
(PUC x3)

Rover Downlook
Camera (RDC)

Descent
Stage
Downlook
Camera
(DDC)

Microphone Capsule

Rover Uplook Camera
(RDC)

© 2021 California Institute of Technology. Government sponsorship acknowledged.

EDLCAM Support Hardware

Backshell Mounted USB HubDescent Stage
Mounted USB Hub

Descent Stage Data
Storage Unit

Rover Data Storage Unit

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Conclusions
• Linux boosted our ability to develop quickly

• We had standard I/O drivers
• Manufacturer BSP was available
• Shell/adb interface made testing much easier
• COTS facilities like Wi-Fi, USB and standard I/O made test support equipment

much easier
• Allowed early prototyping on other platforms like Raspberry Pi

• Linux did very well, as long as you were aware of its limitations
• Not real time, so built in robustness to slips

• RT patch probably would have been better, but not available on our kernel
• Avoid file I/O during performance critical times
• Build in file-system level protections (ex. read-only partitions for software/Linux

executables)
• Future of Linux in space exploration is rosy!

