
1Samsung Open Source Group

JerryScript
An ultra-lightweight JavaScript engine for the Internet of Things

Tilmann Scheller
Principal Compiler Engineer

t.scheller@samsung.com

Samsung Open Source Group
Samsung Research UK

OpenIoT Summit Europe 2016
Berlin, Germany, October 11 – 13, 2016

mailto:t.scheller@samsung.com

2Samsung Open Source Group

Overview

● Introduction

● JerryScript

● JerryScript Internals Overview

● Memory consumption/Performance

● Demo

● Future work

● Summary

3Samsung Open Source Group

Introduction

4Samsung Open Source Group

What is JerryScript?

● A really lightweight JavaScript engine

● Has a base footprint of ~3KB of RAM

● Optimized for microcontrollers

● Originally developed from scratch by Samsung

● JerryScript is an open source project released under the
Apache License 2.0

● Actively developed on GitHub

5Samsung Open Source Group

Why JavaScript on microcontrollers?

● There's a huge pool of JavaScript developers

● Opens up the possibility for web developers to easily write
software for embedded devices

● Performance overhead of JavaScript less of an issue for
control tasks

● Increased productivity, shorter time to market

● Ability to load code dynamically over the network

● Security: Executing JavaScript code is safer than executing
arbitrary native code

6Samsung Open Source Group

JerryScript

7Samsung Open Source Group

JerryScript History

● Development started in June 2014

● Released as open source in June 2015

● JerryScript passed 100% of the test262 conformance test
suite in August 2015

● Rewritten compact byte code implementation landed in
January 2016

● JerryScript 1.0 released in September 2016

● Current focus on usability

8Samsung Open Source Group

JerryScript

● Heavily optimized for a low memory footprint

● Interpreter-only

● Compact object representation

● Compressed pointers

● No AST, directly creating byte code

● Compact byte code heavily optimized for low memory
consumption

9Samsung Open Source Group

JerryScript Portability

● Extremely portable

● Self-contained

● Small C library

● Can run bare-metal

● Supports the STM32F4, Arduino 101, FRDM-K64F,
ESP8266 (experimental) boards

● OS support: NuttX, Zephyr, mbed OS, RIOT

● Runs on Linux/macOS as well

10Samsung Open Source Group

JerryScript

● Written in C99

● About 84KLOC

● Code size 156KB when compiled with GCC in LTO mode
for ARM Thumb-2

● Implements the entire ECMAScript 5.1 standard, passes
100% of the test262 conformance test suite

● C API for embedding JerryScript

● Byte code snapshot feature

11Samsung Open Source Group

Target hardware

● STM32F4 developer board

● Cortex-M4F clocked at 168 MHz

● 192KB of RAM

● 1MB of flash memory

12Samsung Open Source Group

Target hardware

● Particle Photon board

● Cortex-M3 clocked at 120 MHz

● 128KB of RAM

● 1MB of flash memory

● Wi-Fi integrated

● Small footprint (37mm x 20mm)

13Samsung Open Source Group

JerryScript C API

14Samsung Open Source Group

JerryScript C API

15Samsung Open Source Group

JerryScript Internals Overview

16Samsung Open Source Group

High-Level Design Overview

17Samsung Open Source Group

Parser Overview

● Optimized for low memory consumption

– E.g. only 41KB of memory is required to parse the 95KB of
concatenated IoT.js source code

● 12.5KB byte code, 10KB literal references,
12.2KB literal storage data, 7KB for parser temporaries

● Generates byte code directly

– No intermediate representation (e.g. AST)

● Recursive descent parser

– The parser uses a byte array for the parser stack
instead of calling functions recursively

18Samsung Open Source Group

Compact Byte Code (CBC)

● CBC is a variable-length byte code

● Currently 306 opcodes are defined

– Majority of the opcodes are variants of the same operation

● E.g. “this.name” is a frequent expression in JavaScript so
an opcode is defined to resolve this expression

– Usually this operation is constructed from multiple opcodes:
op_load_this, op_load_name, op_resolve

– Other examples: “a.b(c,d)” or “i++”

19Samsung Open Source Group

Compact Byte Code Interpreter

● The interpreter is a combination of a register and stack
machine

– The stack is used to compute temporary values

– The registers are used to store local variables

● Byte code decompression

– Byte code instructions are decoded into a maximum of
three atomic instructions and those instructions are
executed by the interpreter

20Samsung Open Source Group

Compressed Pointers

● Compressed pointers are 16-bit values, which represent
8 byte aligned addresses on the JerryScript heap

– Saves 50% of memory on 32-bit systems

● The JerryScript heap is a linear memory space with a
maximum size of 512KB (equals to UINT16_MAX * 8)

– UINT16_MAX is 65535

● Pointer compression can also be turned off to enable a
maximum heap size of 4GB

21Samsung Open Source Group

Value Representation

● JavaScript is a dynamically typed language

– All values carry type information as well

● ECMAScript values in JerryScript are 32-bit wide

– They can be primitive values (true, null, undefined, …)
or pointers to numbers, strings or objects

● On 32-bit systems, 29 bits are enough to directly store
any 8 byte aligned 32-bit pointer

22Samsung Open Source Group

String Representation

● String descriptor is 8 bytes long

● Several string types are supported in JerryScript besides
the usual character array

– Short strings: Stored in the 32-bit value field

– Magic (frequently used) string indices

23Samsung Open Source Group

Number Representation

● Numbers are double precision values by default

● Optional mode for single precision values

– Single precision numbers do not satisfy the
ECMAScript requirements but can be computed faster,
trading precision for performance

24Samsung Open Source Group

Object Representation

● Garbage collector can visit all existing objects

● Objects have a property list

– Named data, named accessor properties

– Internal properties

● Functions are objects in JavaScript

25Samsung Open Source Group

Memory consumption/
Performance

26Samsung Open Source Group

SunSpider 1.0.2 - Memory consumption

3d-cube

3d-raytrace

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

bitops-nsieve-bits

controlflow-recursive

crypto-aes

crypto-md5

crypto-sha1

date-format-tofte

date-format-xparb

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

0 50 100 150 200 250 300 350 400

35

185

38

11

11

5

5

4

139

80

57

142

92

21

21

6

5

12

125

20

138

339

160

101

106

98

97

97

207

135

190

261

169

352

147

102

101

102

267

107

JerryScript 1.0

Duktape 1.5.1

Max RSS in KB (lower is better) Measured on a Raspberry Pi 2

27Samsung Open Source Group

SunSpider 1.0.2 - Performance

3d-cube

3d-raytrace

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

bitops-nsieve-bits

controlflow-recursive

crypto-aes

crypto-md5

crypto-sha1

date-format-tofte

date-format-xparb

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

0 1 2 3 4 5 6 7 8

0.94

1.11

0.59

2.38

1.08

0.58

0.85

1.01

1.8

0.38

1.11

0.73

0.7

0.87

0.47

1.33

0.73

0.58

2.06

1.39

1.01

1.62

1.23

2.19

1.65

1.51

1.71

7.4

2.88

1.13

1.76

1.44

1.33

3.08

1.64

2.56

2.69

0.83

4.18

4.53

JerryScript 1.0

Duktape 1.5.1

Execution time in seconds (lower is better) Measured on a Raspberry Pi 2

28Samsung Open Source Group

Demo

29Samsung Open Source Group

Pong Demo

● Implementation of the classic Pong game

● Display shared across two devices

● Each device drives one LED matrix

● Implemented as a Node.js module

● "AI" oppenent running on the microcontroller

30Samsung Open Source Group

Pong Demo

Raspberry Pi 2
(1GB RAM, 8GB Flash)

Pong Client
Node.js

V8
Linux

STM32F4 board
(192KB RAM, 1MB Flash)

Pong Server
IoT.js

JerryScript
NuttX

Ethernet

USB Keypad

LED Matrix LED Matrix

I2C I2C

31Samsung Open Source Group

Pong Demo

32Samsung Open Source Group

JerryScript 6LoWPAN Demo

● Multiplayer implementation of the classic Pong/Tetris
game

● Each device drives one LED matrix as display

● Game implemented in JavaScript

● Running on Photon boards

● Low-power wireless communication via 6LoWPAN

33Samsung Open Source Group

JerryScript 6LoWPAN Demo

Raspberry Pi 2
(1GB RAM, 8GB Flash)

Pong/Tetris
JerryScript

Linux

Particle Photon
(128KB RAM, 1MB Flash)

Pong/Tetris
JerryScript

RIOT

USB Keypad

LED Matrix LED Matrix

I2C I2C

Switches via GPIO

6LoWPAN

Live demo will be shown
during ELCE Technical Showcase!

Wednesday, 5:20 PM - 7:00 PM

34Samsung Open Source Group

Future work

35Samsung Open Source Group

Future work

● Further performance and memory optimizations

● Debugging support

● Memory profiling

● Selected ES6 features

● Support for more boards

36Samsung Open Source Group

Summary

37Samsung Open Source Group

Summary

● Significantly lowers barrier of entry for JavaScript
development targeting heavily constrained embedded
devices

● Speeds up development

● Active community

● More information on http://jerryscript.net

● Looking for bug reports and feedback

Thank you.

38Samsung Open Source Group

39Samsung Open Source Group

Contact Information:

Tilmann Scheller
t.scheller@samsung.com

Samsung Open Source Group
Samsung Research UK

mailto:t.scheller@samsung.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

