

Embedded Labworks

By Sergio Prado. São Paulo, September 2021
® Copyright Embedded Labworks 2004-2021. All rights reserved.

Embedded Linux Conference 2021

Understanding the structure of a
Linux kernel device driver

Embedded Labworks

$ WHOAMI

✗ Embedded software developer for more than 25 years.

✗ Consultant and trainer at Embedded Labworks.
https://e-labworks.com/en

✗ Open source contributor (Buildroot, Yocto Project, Linux
kernel, etc).

✗ Blogger at https://embeddedbits.org/.

https://e-labworks.com/en
https://embeddedbits.org/

Embedded Labworks

ABOUT THE TALK

✗ The objective of this talk is to cover the modern architecture of a Linux

kernel device driver.

✗ This is an entry level talk about the main pieces of a device driver in the

Linux kernel (let’s connect the dots!).

✗ We will not cover Linux driver model’s internal structures and data

representation (kobjects, ktypes, ksets, etc).

✗ We will also not cover Linux API’s in details.

✗ In the end of this talk, you will be able to read and understand a modern

Linux device driver, and why not, start writing your own!

Embedded Labworks

AGENDA

1. Introduction to device drivers and character drivers

2. Hardware access (MMIO, gpiolib)

3. Introduction to the driver model

4. Frameworks

5. Buses and device tree

6. Lots of hands-on!

Embedded Labworks

WHAT ARE DEVICE DRIVERS?

✗ Device drivers are just abstractions to a piece of hardware!

✗ Although you can have device drivers running in userspace (via

some kernel interface like UIO or I2CDEV), it's much more common

to have them running in kernel space.

✗ Providing an infrastructure to write and run device drivers is part

of an operating system's kernel responsibility.

✗ On Unix based systems, a file is the most common abstraction to

communicate with a device.

Embedded Labworks

DEVICE DRIVER IS AN ABSTRACTION

Hardware device

Device Driver

File

Kernel space

User space

Hardware

Embedded Labworks

CHAR DRIVER: A SIMPLE ABSTRACTION

✗ There are a few kernel APIs that could be used to export an

interface to userspace in the filesystem (/dev, /sys, etc).

✗ Device nodes are one of the interfaces that could be used, where

files are exported to users in /dev in the form of char or block

device files.

✗ These device files have associated three basic information:

✗ Type (block or char).

✗ Major number.

✗ Minor number.

Embedded Labworks

CHAR DRIVER AS A FILE ABSTRACTION

/dev/ttyS0

type/major/minor

Application

Device driver

read() write()

User space

Kernel space

read() write()

Embedded Labworks

IMPLEMENTING A CHAR DRIVER

✗ Step 1: Allocate the device number (major/minor). This can be done

with register_chrdev_region() or alloc_chrdev_region().

✗ Step 2: Implement the file operation (open, read, write, ioctl, etc).

✗ Step 3: Register the char driver in the kernel with cdev_init() and

cdev_add().

Embedded Labworks

CHAR DRIVER

User spaceKernel space

/dev/ttyS0 (char 4:64)

Application

driver

fops

cdev

fops;
dev_t;

open();
read();
write();
close();

dev_t

dev_tcdev

10:0cdev1

10:1cdev2

50:32cdev3

cdev_init()

alloc_chrdev_region()

write()

4:64

cdev_add()

cdev4

4:64

Embedded Labworks

Hands-on 1

Writing a char driver

Embedded Labworks

LED DRIVER

LED char driver

/dev/led

Kernel space

User space

HardwareSoC
GPIO 1.9

LED

Embedded Labworks

TALKING TO THE HARDWARE

✗ Depending on the hardware architecture, there are a few

mechanisms a CPU can use to communicate with a hardware

device, including:

✗ Port I/O: a dedicated bus is used to communicate with hardware
devices.

✗ Memory-mapped I/O: the memory address space is shared with
hardware devices.

✗ MMIO is currently the most common approach adopted by popular

architectures like ARM.

Embedded Labworks

MEMORY-MAPPED I/O

CPU

Memory

RAM

NOR Flash

I/O

MMU

Virtual
addresses

Physical
adresses

Embedded Labworks

TALKING TO A MMIO DEVICE

✗ Step 1: request access to MMIO registers using a few kernel APIs

like request_mem_region().

✗ Step 2: Map the registers’ physical addresses to virtual addresses,

using functions like ioremap().

✗ Step 3: Use the kernel API to read from and write to the registers,

with functions like readl() and writel().

Embedded Labworks

Hands-on 2

Talking to a MMIO based device

Embedded Labworks

LED DRIVER

LED char driver

/dev/led

Kernel space

User space

HardwareSoC
GPIO 1.9

LED

Problem 1

Problem 2Problem 3

Embedded Labworks

THE DRIVER MODEL

✗ The Linux driver model provides several abstractions to device

drivers to make the code more modular, reusable and easy to

maintain.

✗ Among its components, we have:

✗ Frameworks: the interface exported by a type or class of devices is
standardized.

✗ Buses: information about the devices and where they are connected is
abstracted away from the driver.

Embedded Labworks

LED DRIVER

SoC

LED Driver

/sys/class/leds/led0/...

Kernel space

User space

HardwareGPIO 1.9

GPIOLIB

LED Framework

Platform bus

LED

 Device Tree

Name = “led0”
GPIO = 1.9

GPIO Driver

1

3

2

Embedded Labworks

FRAMEWORKS

✗ Frameworks make it easier to provide a standardized interface and

abstraction for users.

✗ Device drivers developers don't need to think about the interface that
will be exported to users.

✗ Users know beforehand the interface provided by a driver based on
its class or type.

✗ There are frameworks for the most common types of devices: input,

IIO, ALSA, V2L2, RTC, watchdog, etc!

✗ And of course, this is a framework for LED drivers!

Embedded Labworks

USING THE LEDS FRAMEWORK

✗ Step 1: Initialize an structure of type led_classdev.

✗ Step 2: Provide (at least) a callback function to change the status

of the LED.

✗ Step 3: Register the driver in the framework with the function

led_classdev_register().

Embedded Labworks

Hands-on 3

Using the LEDS framework

Embedded Labworks

LED DRIVER

SoC

LED Driver

/sys/class/leds/led0/...

Kernel space

User space

HardwareGPIO 1.9

GPIOLIB

LED Framework

Platform bus

LED

 Device Tree

Name = “led0”
GPIO = 1.9

GPIO Driver

1

3

2

Embedded Labworks

GPIOLIB

✗ The Linux kernel implements a producer/consumer model for GPIO

management:

✗ There are GPIO "producers" like GPIO controllers drivers.

✗ There are GPIO "consumers" like a LED driver, keyboard driver or a
userspace application.

✗ gpiolib is the API provided by the Linux kernel for GPIO producers

and consumers.

Embedded Labworks

GPIOLIB API

#include <linux/gpio.h>
#include <linux/gpio/consumer.h>

struct gpio_desc *gpiod_get(struct device *dev,
 const char *con_id,
 enum gpiod_flags flags);
void gpiod_put(struct gpio_desc *desc);

int gpiod_direction_input(struct gpio_desc *desc);
int gpiod_direction_output(struct gpio_desc *desc, int value);

void gpiod_set_value(struct gpio_desc *desc, int value);
int gpiod_get_value(const struct gpio_desc *desc);

struct gpio_desc *gpio_to_desc(unsigned gpio);
int desc_to_gpio(const struct gpio_desc *desc);

int gpiod_to_irq(const struct gpio_desc *desc);

Embedded Labworks

Hands-on 4

Accessing the hardware via GPIOLIB

Embedded Labworks

LED DRIVER

SoC

LED Driver

/sys/class/leds/led0/...

Kernel space

User space

HardwareGPIO 1.9

GPIOLIB

LED Framework

Platform bus

LED

 Device Tree

Name = “led0”
GPIO = 1.9

GPIO Driver

1

3

2

Embedded Labworks

BUS INFRASTRUCTURE

✗ Bus core: API implementation for a given bus (USB core, SPI core,

I2C core, PCI core, etc), represented in the kernel by the bus_type

structure.

✗ Bus adapters: bus controller drivers, represented in the kernel by

the device_driver structure.

✗ Bus drivers: drivers responsible for managing a device connected to

the bus, represented in the kernel by the device_driver structure.

✗ Bus devices: devices connected to the bus, represented in the

kernel by the structure device.

Embedded Labworks

BUS INFRASTRUCTURE (cont.)

Hardware

Bus adapter

Bus core

Framework

Bus driver

Bus
device

Bus infrastructure

Embedded Labworks

ADVANTAGES

✗ More control over the access on a given bus.

✗ Separate the driver code from the device description.

✗ Easier to identify the hierarchy of devices and buses.

✗ Improves power management.

✗ Improves usability and modularity.

Embedded Labworks

BUSES AND POWER MANAGEMENT

CPU

PCI USB I2C PLATFORM

SOUND USB ETH ACCEL E2PROM RTC

DISK MODEM

Embedded Labworks

I2C BUS

I2C core

Hardware

I2C0 Adapter Driver I2C1 Adapter Driver

I2C Driver
id=”mma8450”

i2c_add_driver()

i2c_add_adapter()

id=“mma8450“
addr=0x10
bus=I2C1.

probe()i2c_new_device()

?

Embedded Labworks

PLATFORM BUS

Platform bus

Hardware

LED driver

platform_driver_register()

Platform device

platform_device_add()

probe()

?
GPIOLIB

GPIO Driver

Embedded Labworks

REGISTERING A DEVICE

✗ A device can be statically registered in the code through an API

provided by the bus core, such as i2c_register_board_info() or

platform_device_register() (this mechanism is deprecated).

✗ Devices can be described and registered via a mechanism provided

by the hardware platform (e.g. ACPI on x86).

✗ Devices can be described and registered via a device tree (standard

mechanism in some architectures such as PowerPC and ARM).

✗ Buses that support device enumeration can automatically identify

and register devices (e.g. USB and PCI).

Embedded Labworks

Hands-on 5

Platform bus and device tree

Embedded Labworks

A FLEXIBLE MODEL

SoC

LED Driver

/sys/class/leds/...

Kernel space

User space

HardwareGPIO 1.9

GPIOLIB

LED Framework

Platform Core

LED

Device Tree

GPIO SoC
Driver

LED {
 <&gpio1 9>
}

Embedded Labworks

A FLEXIBLE MODEL (cont.)

SoC

LED Driver

/sys/class/leds/...

LED Framework

Platform Core

Device Tree

I2C

GPIOLIB

GPIO SoC
Driver

GPIO Expander
Driver

I2C Core

I2C SoC
Adapter

gpioexp {
 I2C0, 0x10
}
LED {
 <&gpioexp 3>
}

LED
GPIO

Expander

Embedded Labworks

A FLEXIBLE MODEL (cont.)

SoC

LED Driver

/sys/class/leds/...

LED Framework

Platform Core

LED
GPIO

Expander

GPIOLIB

GPIO SoC
Driver

GPIO Expander
Driver

I2C Core

I2C SoC
Adapter

I2C Bit Banging

Device Tree

I2C GPIO
Adapter

gpioexp {
 I2C1, 0x10
}
LED {
 <&gpioexp 3>
}

Embedded Labworks

By Sergio Prado. São Paulo, September 2021
® Copyright Embedded Labworks 2004-2021. All rights reserved.

Thanks!

E-mail sergio.prado@e-labworks.com
Website https://e-labworks.com/en

Linkedin https://www.linkedin.com/in/sprado
Twitter https://twitter.com/sergioprado
Blog https://embeddedbits.org

mailto:sergio.prado@e-labworks.com
https://e-labworks.com/en
https://www.linkedin.com/in/sprado
https://twitter.com/sergioprado
https://embeddedbits.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

