
Static Analysis with the
Yocto Project

Jan-Simon Möller, dl9pf@gmx.de

2 Yocto Project® | The Linux Foundation®

Intro

Dipl.-Ing.
Jan-Simon Möller

dl9pf on freenode
dl9pf@gmx.de

AGL Release Manager
jsmoeller@linuxfoundation.org

OpenEmbedded & Yocto Project Board Member

mailto:dl9pf@gmx.de

3 Yocto Project® | The Linux Foundation®

Topics

● Static Analysis - whaaaat ?
● Overview of tools
● CodeChecker
● meta-codechecker
● Summary
● Q/A

Yocto Project | The Linux Foundation

Static Analysis - whaaaat ?

& why you should use it !

5 Yocto Project® | The Linux Foundation®

Static Analysis - whaaaat ?

● Static Analysis is a method to analyse a program that is
performed without actually executing programs.

● Static Analysis becomes an increasingly important topic
when the project involves Functional Safety aspects.
This is the case in Automotive and in Automation as well.

● "But of course /MY code is always correct. "
- But the auditor needs a way to (ap)prove that!

6 Yocto Project® | The Linux Foundation®

Motivation

● Static analysis will not solve all problems (™).
● It will help catching some (possibly tricky to find) bugs.
● The goal is to show ways how to do this using open source

tools available.
● Possible integrations are presented
● I will introduce basics but focus on what can be

integrated with
OpenEmbedded / The Yocto Project builds.

Yocto Project | The Linux Foundation

Overview of static analysis tools

8 Yocto Project® | The Linux Foundation®

Overview of tools

● There are tools available as OSS and proprietary tools.
● Some do pattern recognition, some use/enhance

compilers, some are simple scripts. OSS tools include:
● gcc
● clang
● cppcheck
● flawfinder
● rats
● split

9 Yocto Project® | The Linux Foundation®

During development you can easily use these directly within
your source tree:

● gcc (since gcc 10)
○ gcc -fanalyzer

● clang
○ e.g. scan-build make

● cppcheck

gcc -fanalyzer enables:

-Wanalyzer-double-fclose

-Wanalyzer-double-free

-Wanalyzer-exposure-through-output-file

-Wanalyzer-file-leak

-Wanalyzer-free-of-non-heap

-Wanalyzer-malloc-leak

-Wanalyzer-possible-null-argument

-Wanalyzer-possible-null-dereference

-Wanalyzer-null-argument

-Wanalyzer-null-dereference

-Wanalyzer-stale-setjmp-buffer

-Wanalyzer-tainted-array-index

-Wanalyzer-unsafe-call-within-signal-handler

-Wanalyzer-use-after-free

-Wanalyzer-use-of-pointer-in-stale-stack-frame

10 Yocto Project® | The Linux Foundation®

gcc

> gcc -Werror -fanalyzer nullpointer.c
nullpointer.c: In function ‘main’:
nullpointer.c:7:5: error: dereference of NULL ‘pointer’ [CWE-690] [-Werror=analyzer-null-dereference]

7 | int value = *pointer; /* Dereferencing happens here */
 | ^~~~~
 ‘main’: events 1-2

|
| 6 | int * pointer = NULL;
| | ^~~~~~~
| | |
| | (1) ‘pointer’ is NULL
| 7 | int value = *pointer; /* Dereferencing happens here */
| | ~~~~~
| | |
| | (2) dereference of NULL ‘pointer’
|

cc1: all warnings being treated as errors

11 Yocto Project® | The Linux Foundation®

clang (clang-tidy)

> clang-tidy nullpointer.c
Running without flags.
2 warnings generated.

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
[clang-analyzer-deadcode.DeadStores]
int value = *pointer; /* Dereferencing happens here */

^
nullpointer.c:7:5: note: Value stored to 'value' during its initialization is never read

nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')
[clang-analyzer-core.NullDereference]
int value = *pointer; /* Dereferencing happens here */
 ^

nullpointer.c:6:1: note: 'pointer' initialized to a null pointer value
int * pointer = NULL;
^

nullpointer.c:7:13: note: Dereference of null pointer (loaded from variable 'pointer')
int value = *pointer; /* Dereferencing happens here */
 ^

12 Yocto Project® | The Linux Foundation®

clang (scan-build)

> scan-build make

scan-build: Using '/usr/bin/clang-10.0.1' for static analysis
/usr/bin/ccc-analyzer -c nullpointer.c -o nullpointer

nullpointer.c:7:5: warning: Value stored to 'value' during its initialization is never read
int value = *pointer; /* Dereferencing happens here */
 ^~~~~ ~~~~~~~~
nullpointer.c:7:13: warning: Dereference of null pointer (loaded from variable 'pointer')
int value = *pointer; /* Dereferencing happens here */
 ^~~~~~~~
2 warnings generated.
scan-build: 2 bugs found.
scan-build: Run 'scan-view /tmp/scan-build-2020-10-15-161857-10509-1' to examine bug reports.

> scan-view /tmp/scan-build-2020-10-15-161857-10509-1
Starting scan-view at: http://127.0.0.1:8181

(-> point browser to this)

13 Yocto Project® | The Linux Foundation®

cppcheck

> cppcheck nullpointer.c
Checking nullpointer.c ...
nullpointer.c:7:14: error: Null pointer dereference: pointer
[nullPointer]
int value = *pointer; /* Dereferencing happens here */
 ^
nullpointer.c:6:17: note: Assignment 'pointer=NULL', assigned value is 0
int * pointer = NULL;
 ^
nullpointer.c:7:14: note: Null pointer dereference
int value = *pointer; /* Dereferencing happens here */
 ^

Yocto Project | The Linux Foundation

meta-clang

Cool, I want that for my builds …

15 Yocto Project® | The Linux Foundation®

Allright, let's talk about clang and meta-clang !!

meta-clang is a layer that adds support for the Clang
Compiler/Toolchain.

TLDR: software can be compiled with clang instead of gcc

Thus we can enable tooling like scan-build right away.

More details: https://elinux.org/images/3/3a/ELC_2020_clang.pdf

16 Yocto Project® | The Linux Foundation®

meta-clang

URL: https://github.com/kraj/meta-clang

Main features:

- adds clang as compiler - selectively or
- clang for everything* (TOOLCHAIN = "clang")
- use compiler-rt as runtime (RUNTIME = "llvm")
- add clang to SDK (CLANGSDK = "1")
- enable scan-build (INHERIT += "scan-build")

https://github.com/kraj/meta-clang

17 Yocto Project® | The Linux Foundation®

meta-clang

Notes:

● Look at meta-clang/conf/nonclangable.conf
○ e.g. glibc, gcc, u-boot, grub

● meta-clang/conf/nonscanable.conf

18 Yocto Project® | The Linux Foundation®

meta-clang in action

git clone git://git.yoctoproject.org/poky

git clone https://github.com/kraj/meta-clang

source poky/oe-init-build-env

bitbake-layers add-layer ../meta-clang

https://github.com/kraj/meta-clang

19 Yocto Project® | The Linux Foundation®

meta-clang in action (continued)

cat << EOF >> conf/site.conf

TOOLCHAIN = "clang"

CLANGSDK = "1"

EOF

20 Yocto Project® | The Linux Foundation®

meta-clang in action (continued)

bitbake core-image-minimal

option:

bitbake -c populage_sdk core-image-minimal

21 Yocto Project® | The Linux Foundation®

meta-clang in action (continued)

To enable scan-build do:

cat << EOF >> conf/site.conf

INHERIT += "scan-build"

SCAN_BUILD = ""

SCAN_BUILD_pn-busybox = "1"

CLANG_SCAN_SERVER_IP ??= "0.0.0.0"

EOF

22 Yocto Project® | The Linux Foundation®

meta-clang in action (continued)

To do a scan:

bitbake busybox

or

bitbake -c scanbuild busybox

23 Yocto Project® | The Linux Foundation®

meta-clang in action (continued)

To view the results:

bitbake -c scanview busybox

(currently broken?!)

alternative:

cd tmp/static-scan/busybox/*/ ; python3 -m http.server

Yocto Project | The Linux Foundation

CodeScanner

25 Yocto Project® | The Linux Foundation®

CodeChecker

https://github.com/Ericsson/codechecker

Collection of tools to

● intercept and log the build calls
● analyse the gathered data using (clang-tidy and clangSA)
● report (static or webui)

Extension and successor of the original clang static analyser
/ scan-build.

https://github.com/Ericsson/codechecker

26 Yocto Project® | The Linux Foundation®

27 Yocto Project® | The Linux Foundation®

28 Yocto Project® | The Linux Foundation®

CodeChecker usage

● Userspace tool CodeChecker is a set of python helpers
○ main feature is that you wrap you build commands like so

■ CodeChecker log -b "make" -o compilation.json

○ This will preload a logger and store the compiler commands
○ With the exact commands logged, we can replay the

compilation using clang and its tools clang-tidy and clangSA

■ CodeChecker analyze compilation.json -o ./reports

29 Yocto Project® | The Linux Foundation®

CodeChecker usage #2

● From there you can 'parse' into reports
○ CodeChecker parse ./reports
○ CodeChecker parse ./reports -e html -o reports_html

● or 'store' online in webui/frontend
○ CodeChecker store ./reports --name mypkg@v0.9 \

--url http://localhost:8001/Default

30 Yocto Project® | The Linux Foundation®

31 Yocto Project® | The Linux Foundation®

Yocto Project | The Linux Foundation

meta-codechecker

Cool, I want that for my builds …

33 Yocto Project® | The Linux Foundation®

Ok, I want CodeChecker for my OE/YP builds …

What does the documentation say:

● https://codechecker.readthedocs.io/en/latest/
● There is a section about bitbake:

○ https://codechecker.readthedocs.io/en/latest/analyzer/user_guide/#bitbake

https://codechecker.readthedocs.io/en/latest/
https://codechecker.readthedocs.io/en/latest/analyzer/user_guide/#bitbake

34 Yocto Project® | The Linux Foundation®

35 Yocto Project® | The Linux Foundation®

Hmmm ….

Rolling up sleeves:

Maybe a blind mouldwarp like I can do something about that!

36 Yocto Project® | The Linux Foundation®

meta-codechecker

● Integrates Codechecker seamlessly with bitbake
○ can write HTML reports
○ and upload to database
○ builds all necessary tools on-the-fly

■ requires meta-clang, meta-oe, meta-python

Where?: https://github.com/dl9pf/meta-codechecker

https://github.com/dl9pf/meta-codechecker

37 Yocto Project® | The Linux Foundation®

meta-codechecker - Example: step-by-step

git clone https://github.com/kraj/meta-clang.git

git clone https://git.openembedded.org/meta-openembedded

git clone https://github.com/dl9pf/meta-codechecker.git

(check the meta-codechecker'S README.md)

git clone https://git.yoctoproject.org/git/poky

source poky/oe-init-build-env build-test-codechecker

bitbake-layers add-layer ../meta-openembedded/meta-oe

bitbake-layers add-layer ../meta-openembedded/meta-python

bitbake-layers add-layer ../meta-clang

bitbake-layers add-layer ../meta-codechecker

Next: edit conf/local.conf

https://github.com/kraj/meta-clang.git
https://git.openembedded.org/meta-openembedded
https://github.com/dl9pf/meta-codechecker.git

38 Yocto Project® | The Linux Foundation®

meta-codechecker - Example: step-by-step

cat << EOF >> conf/local.conf

INHERIT += "codechecker"

disable all for now

CODECHECKER_ENABLED = "0"

can enable _class-target for example !

only busybox should use codechecker

CODECHECKER_ENABLED_pn-busybox = "1"

CODECHECKER_REPORT_HTML = "1"

EOF

39 Yocto Project® | The Linux Foundation®

meta-codechecker - Example: step-by-step

bitbake busybox

tree tmp/deploy/CodeChecker/

Yocto Project | The Linux Foundation

Summary

41 Yocto Project® | The Linux Foundation®

Summary meta-clang

++++++++++++++++++++
● meta-clang can be used by developers
● CI use possible, but needs careful list of exemptions
● straightforward workflow
● bitbake integration

● documentation is good
● advanced use-cases need digging
● scanview only per-package

42 Yocto Project® | The Linux Foundation®

Summary CodeChecker

++++++++++++++++++++
● CodeChecker can be used by developers and in CI
● complexity hidden by pre-loaded logger library
● straightforward workflow
● parsers into multiple formats
● Webui to store and browse/review results
● bitbake integration using meta-codechecker

● documentation is good, but has a few dead links and such

43 Yocto Project® | The Linux Foundation®

Todo for meta-codechecker:

● add easy way to inject scanner configurations
○ e.g. select which issues to report (limit noise)

● deal with uploading report & password or token
● improve recipes using pipy currently
● layer vs API vs CodeChecker UI dockerhub version

44 Yocto Project® | The Linux Foundation®

Call to action !

● Static Analysis can help improve your projects!
● Easy to use locally for development
● Integration to OpenEmbedded / Yocto Project

45 Yocto Project® | The Linux Foundation®

Pointers / References

● meta-clang
● meta-codechecker
● github.com/Ericsson/CodeChecker

Not covered in this talk, but highly recommended

● meta-sca

Yocto Project | The Linux Foundation

Q/A

Thank you !
#dl9pf on freenode

48 Yocto Project® | The Linux Foundation®

Hands-on Session

49 Yocto Project® | The Linux Foundation®

Part 1 - meta-clang (only)

50 Yocto Project® | The Linux Foundation®

meta-clang

Start a new ssh connection / terminal.

$>

source ~/yp-summit-may-21/poky/oe-init-build-env \
 ~/yp-summit-may-21/poky/build-analysis-clang

bitbake-layers add-layer ~/yp-summit-may-21/src/static/meta-clang/

51 Yocto Project® | The Linux Foundation®

meta-clang

$> rm conf/auto.conf

$> cat << EOF >> conf/auto.conf

static analysis using clang

TOOLCHAIN = "clang"

CLANGSDK = "1"

INHERIT += "scan-build"

SCAN_BUILD = ""

SCAN_BUILD_pn-busybox = "1"

report external server ip so we can view results ...

CLANG_SCAN_SERVER_IP = "$(lwp-request -o text checkip.dyndns.org | awk '{ print $NF }')"

EOF

$> bitbake -C unpack busybox

52 Yocto Project® | The Linux Foundation®

meta-clang

$> bitbake -c scanview busybox

Open URL printed in terminal and browse around.

Hit CTRL-C to end before we continue. (2 times if necessary)

53 Yocto Project® | The Linux Foundation®

Part 1 - meta-codechecker

54 Yocto Project® | The Linux Foundation®

meta-codechecker

Start a new ssh connection / terminal.

$> source ~/yp-summit-may-21/poky/oe-init-build-env \
 ~/yp-summit-may-21/poky/build-analysis-codechecker

bitbake-layers add-layer ~/yp-summit-may-21/src/static/meta-clang/

bitbake-layers add-layer ~/yp-summit-may-21/src/static/meta-openembedded/meta-oe/

bitbake-layers add-layer ~/yp-summit-may-21/src/static/meta-openembedded/meta-python/

bitbake-layers add-layer ~/yp-summit-may-21/src/static/meta-codechecker/

55 Yocto Project® | The Linux Foundation®

meta-codechecker

$> rm conf/auto.conf
$> cat << EOF >> conf/auto.conf
static analysis using codechecker
INHERIT += "codechecker"
#e.g. enable for all target packages:
#CODECHECKER_ENABLED_class-target = "1"
disable all
CODECHECKER_ENABLED = "0"
only enable busybox
CODECHECKER_ENABLED_pn-busybox = "1"
report into HTML files
CODECHECKER_REPORT_HTML = "1"
EOF

bitbake busybox

check tmp/deploy/CodeChecker/busybox/ !!

 cd tmp/deploy/CodeChecker/busybox/report-html/
python3 -m http.server 8181

56 Yocto Project® | The Linux Foundation®

meta-codechecker

Step 2 … upload to server for later inspection …

$> cat << EOF >> conf/auto.conf
CODECHECKER_REPORT_STORE = "1"
CODECHECKER_REPORT_HOST = "http://ypdd.jsmo.de:8001/"
CODECHECKER_REPORT_ENDPOINT = "$(hostname -s)-\${@'\${DATE}'.replace('.','-')}"
CODECHECKER_REPORT_ENDPOINT_CREATE = "1"
EOF

bitbake -C unpack busybox

check http://ypdd.jsmo.de:8001/ and locate the 'product' matching your hostname !!
#
e.g. devday0005-20210526

http://ypdd.jsmo.de:8001/

57 Yocto Project® | The Linux Foundation®

Notes

58 Yocto Project® | The Linux Foundation®

Then End. Thank you !

