
Open First

Behind the Curtains of
Making Real Consumer
Devices using Debian

Christopher Obbard
chris.obbard@collabora.com

@obbardc

2

About
me

● Engineer at Collabora

● Electronics Engineer

● Working on...
– Custom distros for cloud, embedded and PC

– Continuous integration

– Packaging

– OTA upgrades

– Tooling

chris.obbard@collabora.com

3

Overview

● Part 1: process to bringup a new board

● Part 2: supporting the product to market

● Q&A

● see previous ELCEU2020 talk for more

detailled information on debos

4

Before you start hacking...
● Requirements!

– Peripherals you care about

– Performance

● SoC development kit/documentation
● BSP blobs/source/documentation
● Store it all somewhere shared! (NextCloud?)
● Tech contact at SoC vendor

5

BSP (Board Support Package)
● pre-built image is important!
● source code/build scripts/yocto layers etc
● bootloader/kernel sources
● old release, downstream patches
● depends on your luck!

6

Pre-built image hacking
● validate everything works quickly
● document:

– how to build flasher software

– how to flash (& share with team!)

● get a shell: serial port
● display? hdmi/touchscreen?
● make sure peripherals work in BSP

7

Replacing things...
● partition layout

– analyse on device

– fakemachine can load image and extract blobs/filesystems

● create an image early
– image-partition Debos action with the correct partition layout

– use ripped blobs from BSP image

● top-down replacement
– start with rootfs (use debos to create a Debian rootfs)

– kernel (build from BSP source)

– bootloader (build from BSP source)

● make sure things work still!

9

CI integration
● debos recipes in GitLab (or elsewhere)
● reproduce the image build in the cloud

– nightly builds

– merge requests

– release tags

– email notifications on failure

10

Security
● Lockdown serial ports

– bootloader

– kernel

– check all ports!

● Lockdown services
– debug services, ssh-server

– factory installation scripts

11

Packaging your app
● Container vs native
● Open build service

– build Debian packages

– GitLab stores source code

– builds dependences in order

– creates APT repo

12

OTA upgrades
● MVP & iterative feature development
● Requirements:

– Secure upgrades!

– No bricking

● A/B “slot” system
– Two slots containing a rootfs, bootloader chooses which slot

– Upgrade happens in userspace

– Allows for rollback on failure

13

OTA upgrades
● RAUC is a nice framework

– Integrates with Debos

– Really generic

– Signed/encrypted upgrade bundles

– Casync integration allows installation of chunked update and only
upgrades what has changed

14

Chain-of-trust
● Secure-boot depends on vendor
● Convert rootfs to readonly
● Use dm-verity for filesystem verification
● Use overlayfs to replace configuration files
● If chain-of-trust broken, do not load app

15

Product lifetime
● Base Kernel on LTS stable
● Potential automated rebasing in GitLab?

16

Automated testing
● LAVA continuous integration system

– Flash image to board

– Run some tests

– Report overall pass/fail

– Email notifications to team

● Submit test jobs through GitLab
– Push image out if tests pass?

17

Factory provisioning
● Seperate PC to run tests (NUC?)
● Use the same image as your app
● Extra scripts to program serial numbers etc
● Database of test results by serial number
● Barcode scanner

18

Thank you & questions!
- type: message
 priority: high
 body: Collabora is hiring...
 recipient: you
 calltoaction: https://col.la/join
- type: message
 priority: medium
 body: Ask questions!
 recipient: you
 calltoaction: The chatbox

Christopher Obbard
chris.obbard@collabora.com

@obbardc

https://col.la/join

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

