Creating a Secure
Router with SELinux

Moving Information Protection
to the next Level

Mike Anderson

Chief Scientist

The PTR Group, Inc.

mailto: mike@theptrgroup.com

N TR

http:/ /www.the ptrgroup.com Comig 2010 The

What We Will Talk About

#The Problem of Securing a Router/Firewall

#How does the U.S. Government view
secure computing?

#What is SELinux?

$#Layering security on an example device
» We'll use a firewall/router

#Debugging the security policy

#Handling multiple security levels on the
same machine

$#Evaluations and the Common Criteria

ecsrostinn Comrt (92010 T PTRGr, . M.E‘EE

Router and Firewalls

#Very simply, a router is a device that
handles packet transfer from one network
to another

» LAN to LAN, LAN to WAN/WAN to LAN, or
between WAN segments

#Today, this service is typically combined
with other capabilities such as NAT, DHCP
and firewall features

» The firewall feature is expected to provide a
trusted bastion that allows for packet filtering
o Helps keep the bad guys out of our networks

ecsr0sEnn Coprge (2010, T PTRG I T

Routers and “Feature Creep”

#Over the past few years, routers have
become increasingly complex
» Web browsers for configuration
» SNMP for reporting
» Use of IPTables for filtering
» Addition of IPSEC
» And much more...
#As we add new features, we add more
code
» This code likely has vulnerabilities

[ra— Comrt (92010 T PTRGr, . M.E‘EE

Routers and Linux

#Increasingly, commercial routers are
being implemented using Linux
» Reasonably secure
» Easily maintained

» Already supports web browsers, IP filters,
NAT, DHCP servers

#However, we know that Linux has security
vulnerabilities
» Not as bad as Windoze, thankfully ©

» But, still not up to handling highly sensitive
data

ecsrosELnns Coprge (2010, T PTRG I T

Discretionary Access Controls

#In Linux, we’re most familiar with
passwords and read/write/execute
permissions

» These are called Discretionary Access
Controls (DAC)

#They’re called discretionary because they
are at a user’s discretion to assign and
employ them

» There’s no way for Linux to know who has

the root password or protect against a hacked
program

ecsrostinns Comrt (92010 T PTRGr, . M.E‘EE

Cranking up Security

3 In order to ensure both confidentiality and
integrity in a system, we need to be able
to restrict both the behavior of
applications and users

» Preclude users from accessing applications and
files they shouldn’t
» Constrain applications by enforcing a
predefined behavior
© Define a set of constraints in a security policy

3 This level of security requires the
employment of mandatory access controls
(MAC)

» Auditable actions that are not easily subverted

E1c570 i

/T

The Principle of Least Privilege

#The foundation of traditional Government
data security is that everything not
explicitly allowed is denied

» This is the principle of “least privilege”

#Users/applications are only allowed to do
things that were foreseen in the security
policy

» No “I'll just become root to fix this” allowed
» This is counter to the traditional Linux
approach where everything is “flexible”
o E.g., I'll use “cat” to create a configuration file

ecroscinns oyt 9200, e PTG, N =T~

Different Approaches to Security

#System-High Security

» All subjects (programs, drivers, etc.) in the system
have access to all objects (files, directories, sockets,
etc.)

o Typical RTOS
s Firewalled Security
» Different system-high domains are separated by
hardware/software that prevents sharing
© Seen in many virtual machine/hypervisor approaches
#Transaction-Based Security

» Each subject-object access is validated against a
security policy
® The approach of SELinux

E1c5F0SE xS

2010, e PTRG i, I

/T

Confidentiality and Integrity

#Most believe that security
implies confidentiality e -
» Captured in the Bell-LaPadula A//:% N
(BLP) confidentiality model
o “no read up, no write down”
#However, integrity is also
important
» Represented in the Biba
integrity model
® “no write up, no read down”
$#A flexible security model
must take both into account

ecsrostinnio Comrt (92010 T PR, . M.E‘EE

Security in the Linux Kernel

$#Linux developers recognized the need for
kernel-level security enforcement
» They introduced the Linux Security Modules (LSM)
framework into the 2.5/2.6 kernel development
#The LSM provides the hooks for alternate
security models like LIDS, SELinux, AppArmor,
etc.
#However, Linus did not feel that there was a
security approach consensus for the kernel
(circa 2001)
» The National Security Agency (NSA) proposed SELinux
as one approach
e l.e, a worked example of how it could be done

/T

e

LSM Hooks in the Kernel

#The LSM is implemented via a series of “hooks”
» Your security model plugs in addresses for each of
the hooks (security.h)

struct security
int (

S
fotnel oaplt * inheritable, Kernel cap t * permittsd);
©_chesk) (Struct task struct = target

1a % table, int op);
£ ¢ 1 SElis super_block * ab);
try * deneoy);

(struct timespec *ts, struct timezone *t)y
nough_memory} (struct mm_struct *mm, long peges);

eicsr0sE L2 Coprg (2010, Toe 1

N =7

Enabling SELinux in the Linux Kernel

e B o b

c@@ Ik
e i WA
: = exie ety warin agp i
b ety ot s
= stomrs

Gpnsein e e
@i

1 S St
[T ————

sk S gt SOOI SR

|

st

Eic5r0SE 13 Coprge (2010, T PTRG I T

Example SELinux Hooks

#The security model then installs itself into
the security hook structure eecurity/selinux/hooks.c

=
solinus_ptrac

alloe_security,
frealcacurity,

Eicsr0sEn 14

Security in the Kernel isn’t Enough

#Enabling security in the kernel is a
necessary, but insufficient step
» We need security features in user space as
well
#Essentially, we need to implement a
defense-in-depth strategy
» Assess the threat and implement features as
needed
» This means using both discretionary and
mandatory access controls
e And user-space libraries and applications to
support them

ecsoseLnn1s Coprge (2010, T PTRG I T

SELinux Architecture

SELinux Enabled Kernel

/'
Security Polic;
D

|

SELinux Kemel Module

1. Subjects
to 3 resource object e Other
2. SELinux Kemel Module Object
approves or denies

access to objects bised 1
on polc

— Comrt (92010 T PR, . M_ﬂﬁ

MAC via the LSM

3 The use of the LSM allows the SELinux development
team to implement a set of flexible MAC mechanisms in
the kernel

» Essentially, an implementation of NSA’s “flask” security
architecture

3 The LSM hooks are integrated into the major kernel
subsystems

» No means to side-step the LSM
» Provides for fine-grained object class and permission
abstractions

3 Each kernel object has a security context label
associated with it

» The use of the security context allows the kernel to enforce
access decisions on kernel operations

3 Security contexts have four security attributes

» user:role :sensitivity label

E1c5F0 SELnac 17 [

/T

The SELinux Policy Engine

#Due to the NSA Flask legacy, the SELinux
policy engine is referred to as the
“security server”
#The policy engine implements:
» Type Enforcement (TE) rules
» Role-Based Access Control (RBAC) rules
» Optional MLS/MCS separation
#The security policy is created via
configuration files and then compiled and
loaded into the security server

» Ala kernel modules

ecsrostinnis Comrt (92010 T PR, . M.E‘EE

Type-Enforcement Rules

#Creates “domains” for processes and types for
objects
» A domain is like a sand box
» Think chroot jail on steroids
#Controls access to objects
» Domain-to-type
3 Controls process interactions
» Domain-to-domain
3 Controls entry into domains
» Domain transitions
#Binds domains to executable code

"y Coprge (2010, T PTRG I T

SELinux TE Diagram

& =)

File Access Operations:
+Status

«Create

*Read

“Write

+Append

“Execute

“Ete.

Domain (sample_app_1) Type (sample_data_t)

ecsroseina oyt 92010, e PTG, N =T~

Example TE Rules

$#Let apache create its PID file

allow apache_t var_run_t:dir (search add_name);
allow apache_t apache_var_run_t:file {create write}
type_transition apache_t var_run_t:file apache_var_run_t;

F#Let VNC read its config file

allow vnc_t vnc_conf_t:file {getattr read);

3tLet ssh bind a TCP socket
allow sshd_t ssh_port_t:tcp_socket name_bind;

#A complex system may have hundreds of
thousands of TE rules

» This screams for automated tools and
macro

Eicsr0sE L2 =

/T

Role-Based Access Control Rules

#Processes can be executed in a specific role
» E.g., system admin, unprivileged user, etc.
$Limits which domains can be entered by each
role
» E.g., system admin can run “ifconfig” and
“traceroute”, but normal user can’t
$#Each user then has a set of authorized roles
#Sets a default domain for each user when they
log in
#Uses TE rules to help manage the transitions
and capabilities

eicsr0sE L2

N =7

Sensitivity Labels

#The security context’s last element is a
sensitivity label
» Comprised of a hierarchical sensitivity level
and, optionally, one or more categories

e Depending on the policy there can be 1 or 16
levels and 1024 categories

#The levels can be used for standard MLS
applications
» The categories can be viewed as
“compartments”
» Some commercial applications use the
categories as successive access constraints

ecsroseLnn2y Coprge (2010, T PTRG I T

Example Sensitivities

#s50:c0 is the lowest
#We can specify multiple categories at the
same time
» s0:c1,c10,c25
#O0r ranges
» s0:¢c6.c13
#The highest sensitivity level is
» $15:c0.c1023

e Also known as “System High”

[ra— Comrt (92010 T PR, . M.E‘EE

New File System Features

#The addition of MLS/MCS extensions also
provides a means to segregate directories
via “polyinstantiation”

#With polyinstantiation, each sensitivity
level can see its own directory

» An unclassified /tmp, secret /tmp, etc.

#Handled transparently by the O/S

Eic5r0SE L2 Comrge (4 2010, Th PTRG

/T

Polyinstantiated Directory Example

 Fler ([Fiez)

Filo4 File§

Eicsr0sE N2

File Contexts

$#Each directory/file/dev node/symlink in the
system also has additional security labeling
information known as the file’s context
#Example:
/usr/bin/appl - system u:object_r:appl_t:s0:c0
#The file system must be labeled with the correct
file contexts
» The “fixfiles”, “setfiles”, and “restorecon” commands
#The file context then provides a mechanism to
restrict access to each file system element by
domain, user or role

ecsroseLnn Coprge (2010, T PTRG I T

Implementing the Router

#Given this SELinux background, we can
now move on to the requirements to
implement the router capability

#We next need to develop the
requirements and security architecture
document

» What do we need the device to do?
» What does it need to protect?
» Are we MLS/MCS?

#This needs to be done in coordination

with your sponsor organization

[ra— Comrt (92010 T PR, . M.E‘EE

Next Steps...

#Given the security architecture and
requirements we can now start implementing
something!

#We start with a good router design

» Like the Linux router project

Lo RtorProoct

#Next, we enhance it with SELinux
» This requires the definition of the security policies
ecsrostinn [—— ;ﬁ 7=

Security Engineering

3 Given a router design, we need to isolate the IPCs
» Who needs to talk to whom
» Direction of the data flow
3 We need to think in terms of uni-directional
communications paths
» Do not violate “no read down”, etc.
» Well-defined communications
3 The SELinux sample “targeted” policy may be a good
place to start

» Allows everything but constrains only certain applications of
concern

» Progressively tighten the policy as you learn the interactions
between applications
3 However, security engineering is rarely a trivial effort
» SELinux is not a panacea

[ra— Comrt (92010 T PR, . M.E‘EE

Warning: The BIOS is *Evil*

Before we can create a device capable of
handling secure information, we need to
establish a root of trust within the device

» Technically, this must start with the power-on jump
to the BIOS and then move on to the boot loader
» From there, we hit the O/S and the security policy

3 Since we don’t have control of the BIOS

sources, we shouldn’t trust them
» CoreBoot, U-Boot or some other boot loader must be

combined with a security device such as a Transaction
Processing Module (TPM)

© But, that’s another talk altogether ©

-

/T

Security Policy Life Cycle

$#Policies are written as ASCII text files
» Specialized IDEs such as the SLIDE Eclipse plug-in,
Polgen or SEEdit can be used to ease policy creation
o I did my first policy in “vi” ©
#The policy is then checked for syntactic
correctness using the “checkpolicy” command
#Next, you compile the policy using “make”

» This produces a policy binary or a loadable policy
module

$#Finally, you load the policy using “load_policy”
» Test, test, test...

eicsr0 s Coprge 200, The

N =7

Example Policy Tool: SLIDE

#Built as an Eclipse
Plug-in

#Allows editing the
policy as well as
compiling it for
inclusion to the
kernel

#Just one of many
tools for SELinux
that have been
developed

Eic5r0SE L Coprge (2010, T PTRG I

/T

Testing a New Policy

#We can use the “setenforce” command to
switch between strict and permissive
mode

» Permissive mode logs a violation but doesn’t
deny the access

H#Access vector (AV) information is then
logged to /var/log/messages

» Tools like “audit2allow” and “audit2why” help
figure out what is happening

[ra— Comrt (92010 T PR, . M.E‘EE

Sample Logfile Entry

3 Here is an example of the AVC logging output

Whatwas denied?

Jan lB 19:56:08 localhost kernel:

for pid=16577 @
ino=618992 fatwas accessed
scontext=root:staff_r:staff_t Surceconer e
tcontext=system u:object r:var_log_t Tsecone
tclass=file

E1c5F0SE Lo

/T

The Policy-writer’s Friend: -Z

#Many of the key Linux user commands
have been enhanced to support the -Z
option

» Shows security context
s, ps, dir, find, install, mkdir, killall,
pstree, stat, vdir and sudo/sudoedit all
have support for -Z
#Given a log entry, we can use the -Z
options to examine the security contexts
that are causing the failures

ey

N =7

Modifying the Policy

#0nce we have the log file entries:

» We then deduce which “allows” or role transitions are
needed to address the failure

» Next, we modify the policy
» Then, rebuild the policy and reload it
» Finally, try the access again to see if the change
solved the problem
#Debugging the policy is an iterative and rather
time consuming process
#Next, we need to be evaluated...
» This requires an outside evaluation organization

E1c560 ey

/T

Evaluation

#The old Orange Book has been superseded by
the Common Criteria (CC) (ISO/IEC 15408)
» An international standard for computer security
#The CC consists of a series of protection
profiles
» CAPP, LSPP, RBACPP

® These are now technically retired and have been replaced
with “Robustness” level protection profiles

#The device is then evaluated to an Evaluation
Assurance Level (EAL 1-7)

» See http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
for a quick overview of the EALs

[ra— Comrt (92010 T PR, . M.E‘EE

SELinux and the CC

#RHEL 5/5.1 and SLES 10 were successfully
evaluated at EAL 4+

#This includes the Common Access
Protection Profile (CAPP)

e Equivalent to the old Orange Book C1 level

#RHEL 5.1 also added Labeled Security PP
(LSPP) and Role-Based Access Control PP
(RBACPP)

e Roughly equivalent to the Orange Book B1/B2 level
e Also added network packet security labeling
- “secmark”

Eicsr0sEnx Coprge (2010, T PTRG I

2T
Summary
#SELinux adds significant additional o
hardening A
» Used in conjunction with IPTables, IPSEC D,E’“y;'}‘;'x

labeling, etc. and other “good security
practices”

> Sulljlsystems like “tripwire” can be used as
we

$#Develop the device’s requirements and
security architecture

$#Limit the number of applications and
their files

#Develop the security policy and test it
thoroughly

#Submit for evaluation if needed

£1c570 S0 Coprgt (2010, T PTRG I

