
2 0 2 1 W I N D R I V E R , A L L R I G H T S R E S E R V E D

Maarten Koning
Wind River Fellow

HYPERVISOR-LESS VIRTIO FOR
REAL-TIME AND SAFETY

Linux Foundation ELC
Sept 28th, 2021

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

DIGITAL
FEEDBACK

LOOPS

EDGE

INTELLIGENT EDGE + MISSION CRITICAL INTELLIGENT SYSTEMS

FAR EDGE
CLOUD + DEVICES

AUTONOMOUS

PREDICTIVE

SENSING

AUTOMATE

REAL-TIMECONNECT

EMBEDDED SYSTEMS → INTELLIGENT SYSTEMS

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Open Architecture / Open Ecosystem
Multi-party Software Integration

EMBEDDED SYSTEMS
Black Box Dedicated Systems

Enclosed and Engineered Open and Orchestrated

App
1

App
2

App
3

App
n

PLATFORM SOFTWARE

…

INTEGRATION PLATFORMS
White Box Partitioned Systems

FIXED-FUNCTION EMBEDDED SYSTEMS ARE
NOW INTELLIGENT EDGE DEVICES

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Infusion pumps are becoming medical service platforms
… in hospital infrastructure.

Robot arms are becoming assembly service platforms
… in factory infrastructure.

Cars are becoming transportation service platforms
… in fleet management infrastructure.

…

INTELLIGENT DEVICES INTEGRATE INTO
BACKEND SYSTEMS → IT/OT CONVERGENCE

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

THE PROBLEM …
How to engineer large amounts of software into edge devices given that:

• modern multicore SoCs are specialized / complex / heterogeneous
• software elements are diverse (FOSS, real-time, safety, 3rd party…)

→ a structured approach is needed to enable software reuse

Element separation is needed for:
• independent CI/CD lifecycles
• fault propagation prevention
• resource allocation management
• privilege management

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

THE SITUATION …
1. Moore’s Law + Moore’s Gap

→ Multicore SoCs

2. Software complexity
→ Software partitioning

3. Time to market / cost of ownership
→ Open Source

4. Hardware enablement
→ Linux

5. Chipageddon
→ hardware & software consolidation / silicon independence

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

1. Moore’s Law + Moore’s Gap = Multicore SoCs
Once upon a time, Moore’s Law (and Dennard scaling) helped chip performance:

→ caching, pipelining, superscalar, SMT/FGMT/CGMT, OOO & speculative execution,
silicon integration …

Then came the big bad “Moore’s Gap”.
→ it became harder and harder to increase single core performance using transistors
→ and Dennard scaling broke down due to thermal effects

So now we spend transistors on hardware integration and concurrency enablement:
→ multiple/many cores, specialized cores & accelerators, virtualization,

compute islands for real-time and safety, …
→ compute islands avoid interference & serialization by avoiding shared hw & sw

→ we are now clearly in the era of the complex heterogeneous multicore SoC.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

2. COMPLEXITY DUE TO INCREASED SOFTWARE

COMPLEXITY OF AUTOMOTIVE CODE

COMPLEXITY OF AUTOMOTIVE ARCHITECTURE COMPLEXITY OF VARIANTS

COMPLEXITY OF AUTOMOTIVE REQUIREMENTS

Model Year Lines of code (million)

2000 1

2010 10

2020 100

2030 300 / 500 / 1000+

§ 7,000 external signals connecting 120 ECUs today
§ 2 orders more internal signals

Variants allow manufacturers to satisfy the needs of different
market segments but also become one of the most significant
sources of complexity

§ More than 100,000 functional requirements in the
vehicle superset

§ Divided into multiple design requirements

www.researchgate.net/publication/327285609_Revealing_the_Complexity_of_Automotive_Software

http://www.researchgate.net/publication/327285609_Revealing_the_Complexity_of_Automotive_Software

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

• accommodates current & future requirements
• allows us to engineer reusable components
• can accommodate diverse constraints
• separates composition, configuration & policy
• is structured & understandable

→ We partition the software complexity into manageable entities
by leveraging libraries, kernel modules, programs, packages,
containers, VMs … and multiple runtimes.

As software architects, we want a strong yet flexible
architectural foundation that:

THE REMEDY … PARTITIONING

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

• FOSS → FLOSS
• Whither portability
• BYO2S (VMs, containers, RTOS, …)
• <x>ability
• Ready-made software
• Trusted software
• Infrastructure-as-code
• Software diversity
• Silicon Enablement
• Many Linux flavors

3. MEANWHILE,
… THE SW TRENDSCAPE …

Manageability
Availability
Reliability
Maintainability
Scalability
Extendability
Reusability
Understandability
Deployability
Serviceability
Compatibility
Integrateability
Useability
Updateability

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

4. THE REALITY …
EDGE DEVICES WILL INCREASINGLY CONTAIN LINUX

a) Edge devices have large amounts of open-source middleware & ready-made
applications that are increasingly only available for Linux.

b) Board support packages for edge devices are increasingly only available for
Linux.

c) Porting code from Linux is increasingly problematic.

→ Therefore, edge devices will increasingly contain an instance of Linux.

QED //

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Emerging Use Cases Demand Low Latency and Accelerated Processing at the Edge.

Edge
Infrastructure:

Autonomous
Devices:

Immersive
Experiences:

IoT &
Analytic:s

Wireline
PON

Autonomous
Vehicles

Augmented
Reality

Home
Devices

Wireless
vRAN, vEPC

Drones

Virtual
Reality

Industrial
Sensors

uCPE
SD-WAN

Industry
Robots

360
Video

Retail

IP Enterprise
Services

Medical

Wearable
Cognitive
Assistance

Healthcare

THE INTELLIGENT EDGE REQUIRES REACTIVITY

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

IF EDGE DEVICES WILL CONTAIN LINUX, WHERE
WILL THE REAL-TIME AND SAFETY WORKLOADS RUN?

1. On Linux when it has sufficient reactivity
→ “software-based partitioning” (Linux-only approach)

2. Beside Linux in a virtual machine
→ “virtualization-based partitioning” (Hypervisor needed)

3. Beside Linux on a compute island
→ “physical partitioning” (Hypervisor-less)

4. Beside Linux on a borrowed core
→ “whiteboard partitioning” (Be careful!)

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

TELL ME MORE ABOUT THIS “BORROWED CORE” THING

1. Linux SMP boots up across all the cores on the main CPU cluster
2. A core is marked offline using the Linux CPU hotplug feature
3. A bare metal image is loaded into some physical memory

→ a Linux boot-line option or the device tree can reserve memory at a fixed location
4. Some Linux kernel code resets that core to execute at the starting address

of the loaded bare metal image
→ Intel code uses kprobes to wake up the core with an NMI
→ ARM code uses the PSCI to do it

5. The bare metal image uses only per-core resources (timer, interrupt
controller, MMU etc) + allocated devices

→ Voila! Asymmetric multiprocessing on SMP hardware.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

REALTIME AND SAFETY WORKLOADS WITH LINUX *

L RT|S

4. Compute Islands
(Physical Partitioning)

L: Linux general-purpose workload
rt: soft realtime workload
RT: hard realtime workload
S: safety workload

Green: standard practice
Orange: Less commonly seen

(OS research / new / future)

RT|SL

3. Mixed-Criticality
(Virtual Partitioning)

Hypervisor

L rt

1. Core Reservation
(Software partitioning)

1a: User-level process
1b: unikernel
1c: KVM + rt workload
(PREEMPT_RT helpful)

RTL

2. Core Offload
(Whiteboard partitioning)

Hypervisor
optional

2a: Unsupervised AMP
2b: Partially-supervised AMP

* Assuming Linux cannot yet achieve
certification to run safety workloads.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

(*) Linux PREEMPT_RT patch required, else expect
100s of uSec-ish for tuned Linux (PREEMPT_VOLUNTARY) or
mSec-ish for untuned (PREEMPT_NONE) Linux.

REALTIME & SAFETY WORKLOADS WITH LINUX

10s of uSec-ish soft realtime required:
→ deploy native workload as a Linux* process thread on a reserved core(s).
→ research: deploy realtime workload using Linux* KVM vCPU on a reserved core(s).

uSec-ish hard realtime required:
→ deploy RT workload beside Linux on a compute island or in a VM with a RT hypervisor.
→ research: deploy realtime workload beside Linux on a core(s) offloaded from Linux.

Safety required:
→ deploy safety workload on a compute island or in a VM with a safety hypervisor.
→ research: deploy safety workload on Safety Linux on a reserved core(s).

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Linux App

Linux
SMP

TSN App

RTOS

KVM

TSN
NIC

CPU
Core

CPU
Core

CPU
Core

Linux App

Linux
SMP

TSN App

RTOS

KVM

TSN
NIC

CPU
Core

CPU
Core

CPU
Core

Control / Think

USE CASE: KVM WITH CORE ISOLATION
FOR TIME SENSITIVE NETWORKING (TSN) OFFLOAD

TSN Switch

Option #1: Through a TSN Switch

Option #2: Direct Connect

Sense / Actuate

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

BUT HOW TO SHARE RESOURCES BETWEEN RUNTIMES?

When workloads run on different runtimes in the same SoC, we
need the runtimes to integrate for the purposes of:

1. printf(), console and debug access
2. read/write of Linux file systems from auxiliary runtimes
3. intra-SoC messaging between Linux and auxiliary runtimes

The “de facto” approach is to use TCP/IP for this over an on-chip or
on-board ethernet switch - or via a virtual ethernet driver.

However, TCP/IP is a WAN protocol which is a heavyweight intra-SoC
solution for these local runtime integration needs.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

WHY USE VIRTIO FOR INTRA-SoC WORKLOAD INTEGRATION?

1. virtio is already available both in Linux and in many runtimes

2. virtio is an open specification that is transport independent

3. virtio has AF_VSOCK which is similar to AF_INET
→ our experiments show it is 10x faster than TCP/IP over virtio

4. virtio can be run over shared memory without a hypervisor
→ so-called “hypervisor-less virtio”

5. virtio has low-level devices and higher-level services too

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HYPERVISOR-LESS VIRTIO

Define and prototype a framework for using virtio as a communication
infrastructure, while removing the constraints usually associated with the
presence of a hypervisor.
Hypervisor-less virtio PoC:

• 64-bit x84 and ARM support
• Hardware notifications
• Selected Linux kvmtool AKA “lkvm” as the virtio back-end

→ leveraging its existing support for console, 9p file system, vsock and virtio-net.
→ added new MMIO over shared memory transport
→ enabled /dev/{vhost-vsock,vhost-net} for vhost offload without workload
virtualization.
→ also kvm is now optional (not needed for compute islands or core offload)

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

GENERALIZED HYPERVISOR-LESS
VIRTIO ARCHITECTURE

Auxiliary
Runtime

ApplicationGeneral-Purpose
VMs, Containers,
and Processes

kvmtool
daemon

Linux

General-Purpose
Cores and Devices

Partitioning via core reservation, core offload, virtualization, or compute islands

File Access, Console,

IPC, Networking(Virtio)

Real-time / Safety
cores and devices

POSIX

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIMILARITIES / DIFFERENCES

kvmtool / lkvm on Linux as
Virtual Machine Monitor (VMM)

Guest

virtio devices

Device
configuration

Feature
bits

Device
status

virtqueues

virtio drivers*

buffers Auxiliary Runtime

kvmtool / lkvm on Linux as
Physical Machine Monitor (PMM)

virtio drivers*

virtio devices

Device
configuration

Feature
bits

Device
status

Shared memory
region definition

Shared memory
region

virtqueues buffers

Hypervisor (KVM)

* File system (9P), Console (serial), Network (virtual ethernet), IPC (vsock)

STANDARD VIRTIO HYPERVISOR-LESS VIRTIO

Front-End

Back-End

Bus (PCI, MMIO, Channel I/O)

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HYPERVISOR-LESS VIRTIO SHARED MEMORY LAYOUT

DTB fragment

Device 0 header

Device 0 shared memory

Device <n> header

Device <n> shared memory

…
Per-device shared memory

virtio console 24 KB

vsock 64 KB

9p 24 KB

virtio net 64 KB

Shared Memory

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Linux

HYPERVISOR-LESS VIRTIO SCENARIOS

rt
Linux RT|S

The Linux non-realtime / non-safety services are provided to apps on auxiliary runtimes via:
• open()/close()/read()/write()/ioctl()/… for serial and file system access
• socket()/bind()/connect()/accept()/sendto()/recvfrom()/… for IPC
• PoC development strategy:

• step 1: enable printf() and file access from auxiliary runtimes using virtio
• step 2: enable AF_INET socket family over virtio ethernet
• step 3: switch to AF_VSOCK to remove IP stack requirement for auxiliary runtimes

Linux
RT

RT Hypervisor
(opt) RT|S Hypervisor

Linux RT|S

kvm

3. Mixed-Criticality
(Virtual Partitioning)

2. Core Offload
(Whiteboard partitioning)

1. Core Reservation
(Software partitioning)

4. Compute Islands
(Physical Partitioning)

= SHMEM

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HOW IT WORKS

1. In a hypervisor-less deployment, hardware mechanisms are used to
signal device configuration and to send virtqueue notifications.

2. Upon receiving the hardware notification from the virtio front-end (i.e. the auxiliary
runtime), Linux notifies the user-level PMM (kvmtool daemon) .

3. Upon being notified via an eventFd, the PMM determines the state of the virtio
device using the device status field and its registry values and handles the request.

4. If the PMM can offload processing to vhost, it will act as a proxy between vhost
services and the auxiliary runtime by capturing and relaying notifications.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

VSOCK-ONLY HYPERVISOR-LESS VIRTIO

A TCP/IP port to vsock port PMM proxy (a la socat & ncat) between the
host and the auxiliary runtime enables them to use vsock instead of TCP/IP.

→ yet still be reached using TCP/IP from Linux.

Example use cases:
§ debug an auxiliary runtime with GDB using a vsock GDB server on the auxiliary runtime.
§ access a shell on the auxiliary runtie using telnet or ssh with a vsock telnet/ssh daemon.
§ enable auxiliary runtimes to leverage Linux file systems using vsock-based 9p or nfs clients.
§ connect a vsock-based client/server on an auxiliary runtime to a Linux TCP/IP server/client

→ With this approach there may be less need to safety-certify an IP
stack for a safety island if it is less expensive to certify virtio vsock.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIDE NOTE ON THE PERFORMANCE OF VIRTIO
MMIO WITH MSIs WITH A HYPERVISOR

TRAP
(R)

TRAP
(W)

CHECK IRQ
(R)

ACK IRQ
(W)

NOTIFY
(W)

IRQ (host
signal)

MSI (host
signal)

virtio MMIO
without MSIs

652633 652638 652615 652615 329666 660911 0

virtio MMIO
with MSIs

20 66 0 0 591161 0 1.182M

§ IRQ: 1.3M more traps, 1M more memory accesses → 600K fewer host signals
§ MSI: 2x the number of host signals is due to 80%+ higher bandwidth

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIDE NOTE ON THE PERFORMANCE OF
VIRTIO/PCI VS VIRTIO/MMIO WITH A HYPERVISOR

Test Virtio PCI Virtio MMIO
without MSI

Virtio MMIO
with MSI

TCP_RR (host -> guest) 20182 11009 20352

TCP_RR (guest -> host) 20463 10955 20058

§ TCP_RR measures round trip latency (more trans/s = lower latency)
§ Host is a Walnut Canyon system with Ubuntu
§ Guest is Yocto Linux running via LKVM

→ Virtio MMIO + MSI (Message Signaled Interrupts) is as fast
as virtio over PCI

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

CONCLUSIONS
1. Partitioning systems at the OS instance-level using VMs, containers and

auxiliary runtimes helps deal with edge device software complexity.

2. Linux-based system architecture is increasingly used at the edge – and
auxiliary runtimes for real-time & safety partitioning can sometimes help.

3. Compute islands can avoid the need for virtualization to enable real-time
or safety workloads with Linux-based systems.

4. Hypervisor-less virtio can help unify workload integration for the various
partitioning scenarios involving auxiliary runtimes on multicore SoCs.

5. The socket API can unify TCP/IP communication and higher-speed
VSOCK-based local IPC.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

KVMTOOL LINKS

kvmtool was forked to enable its use as a hypervisor-less virtio back-end. It is on the
OpenAMP GitHub since this work is being done as part of the OpenAMP Application Services
Working Group activities:

https://github.com/OpenAMP/kvmtool

More info on OpenAMP activities is here:

https://www.openampproject.org/news/

MMIO MSI support for kvmtool is here:
https://github.com/OpenAMP/kvmtool/tree/mmio_msi

https://github.com/OpenAMP/kvmtool
https://www.openampproject.org/news/
https://github.com/OpenAMP/kvmtool/tree/mmio_msi

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Take a tour of the capabilities at:

www.windriver.com/studio/tour

THE PLATFORM FOR MISSION-CRITICAL INTELLIGENT SYSTEMS

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Take a tour of the capabilities at:

www.windriver.com/studio/tour

THE PLATFORM FOR MISSION-CRITICAL INTELLIGENT SYSTEMS

THANK YOU!

