
Improvement of Scheduling

Granularity for Deadline Scheduler

Copyright 2012, Toshiba Corporation.

Yoshitake Kobayashi
Advanced Software Technology Group

Corporate Software Engineering Center
TOSHIBA CORPORATION

Outline

� Motivation

� Deadline scheduler

� SCHED_DEADLINE and its evaluation

� Budget management

� Conclusion

2TOSHIBA Confidential

Motivation

� We would like to use Linux on control systems

� Real-time is one of the most critical topic

� Problem statement

� Need to evaluate deeply to meet the deadline

� CPU resource used too much by higher priority tasks

3TOSHIBA Confidential

� CPU resource used too much by higher priority tasks

EDF scheduler

Definition of deadline
� Wakeup time: The time of an event occurred (Ex. Tim er interrupt)

and target task’s state changed to runnable.

� Event response time: Interrupt latency

� Deadline: The time for a target task must finish

Process time

Event response time

4TOSHIBA Confidential

Wakeup time
Deadline

Period

Event response time

Wakeup time

Earliest Deadline Fisrt scheduling （EDF）
� The earliest deadline task has the highest priority
� Task’s priority is dynamically changed and

managed
� SCHED_FIFO is static priority management

� Theoretically the total CPU usage by all tasks is
up to 100%
� Includes the kernel overhead

5TOSHIBA Confidential

� Includes the kernel overhead
� If usage of CPU by all tasks is less than 100%, all

tasks meet the deadline

� Reference
� http://en.wikipedia.org/wiki/Earliest_deadline_first_schedu

ling

An example of EDF Scheduling

� Task1: budget 1ms period 8ms

� Task2: budget 2ms period 5ms

� Task3: budget 4ms period 10ms

T1

20ms0ms

CPU usage＝＝＝＝0.925%

＜＜＜＜ 100%

6TOSHIBA Confidential

T1

T2

T3

Rate-Monotonic Scheduling （RMS）
� One of the popular scheduling algorithm for RTOS
� Assumptions for task behavior

� NO resource sharing such as hardware, a queue, or any kind of semaphore
� Deterministic deadlines are exactly equal to periods
� Static priorities (the task with the highest static priority that is runnable

immediately preempts all other tasks)
� Static priorities assigned according to the rate monotonic conventions (tasks with

shorter periods/deadlines are given higher priorities)
� Context switch times and other thread operations are free and have no impact on

the model
CPU utilization

7TOSHIBA Confidential

� CPU utilization
� n: number of periodic tasks，Ti: Release period, Ci: Computation time

� CPU utilization depends on the combination of periodic tasks and it is possible to
meet the deadline even the CPU utilization is around 80%

� Reference
� http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling

69.02ln)12(/
0

≈→−≤= ∞=
=
∑ n

n

i

n
ii nTCU

Compared with the RMS scheduling

� Task1: budget 1ms period 4ms
� Task2: budget 2ms period 6ms
� Task3: budget 3ms period 8ms

T1

T2

20ms0ms

RMS

CPU usage＝＝＝＝0.958%

8TOSHIBA Confidential

T3

deadline miss

T1

T2

T3

20ms0ms

EDF

Comparison of deadline algorithms

Advantage Disadvantage

RMS Easier to implement

Evaluation for
scheduling possibility is

required to meet the
deadline

9TOSHIBA Confidential

deadline

EDF

No evaluation for
scheduling possibility is

required to meet the
deadline

Difficult to implement

SCHED_DEADLINE

� http://www.evidence.eu.com/sched_deadline.html
� Implements the EDF scheduling algorithm

� Posted to LKML by Dario Faggioli and Juri Lelli

� Latest version is V6 (2012/10/24)

� But V2 and V4 are used in our evaluation.

� Key features of SCHED_DEADLINE

10TOSHIBA Confidential

� Key features of SCHED_DEADLINE
� Temporal isolation

� The temporal behavior of each task (i.e., its ability to meet its
deadlines) is not affected by the behavior of any other task in the
system

� Each task is characterized by the following aspects:

� Budget: sched_runtime

� Period: sched_period, equal to its deadline

Build SCHED_DEADLINE(linux kernel)
� Get rt-deadline from the following place

� git clone git://gitorious.org/rt-deadline (for V2)

� Kernel configuration
� CONFIG_EXPERIMENTAL = y
� CONFIG_CGROUPS = y
� CONFIG_CGROUP_SCHED = n
� CONFIG_HIGH_RES_TIMERS = y

11TOSHIBA Confidential

� CONFIG_HIGH_RES_TIMERS = y
� CONFIG_PREEMPT = y
� CONFIG_PREEMPT_RT = y
� CONFIG_HZ_1000 = y

� Note: For V6
� git clone git://github.com/jlelli/sched-deadline.git

Overview of SCHED_DEADLINE

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and budget

System call

12TOSHIBA Confidential

Kernel

task_struct

sched_calss

dl_sched_class

enqueue_task_dl

dequeue_task_dl

sched_dl_entity
task_tick_dl

set_curr_task_dl

・

・

・

・

・

・

・

・

・

・

・

・

rb_node

dl_runtime

dl_deadline

dl_timer

・

・

・

・

・

・

・

・

Overview of SCHED_DEADLINE

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and budget

System call

13TOSHIBA Confidential

Kernel

task_struct

sched_calss

dl_sched_class

enqueue_task_dl

dequeue_task_dl

sched_dl_entity
task_tick_dl

set_curr_task_dl

・

・

・

・

・

・

・

・

・

・

・

・

rb_node

dl_runtime

dl_deadline

dl_timer

・

・

・

・

・

・

・

・

Setting CPU utilization for EDF tasks

� Parameters can be setted via procfs
� CPU utilization for rt(SCHED_FIFO and SCHED_RR) and

dl(SCHED_DEADLINE) should be under 100%

� Parameters for EDF scheduler

� /proc/sys/kernel/sched_dl_period_us

� /proc/sys/kernel/sched_dl_runtime_us

� When a task requires more than above limit, the tas k

14TOSHIBA Confidential

� When a task requires more than above limit, the tas k
cannot submit to run

� An example setting (rt: 50%, dl:50% ））））

� # echo 500000 > /proc/sys/kernel/sched_rt_runtime_us (500ms)
echo 100000 > /proc/sys/kernel/sched_dl_period_us (100ms)
echo 50000 > /proc/sys/kernel/sched_dl_runtime_us (50ms)

Overview of SCHED_DEADLINE

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and runtime

System call

15TOSHIBA Confidential

Kernel

task_struct

sched_calss

dl_sched_class

enqueue_task_dl

dequeue_task_dl

sched_dl_entity
task_tick_dl

set_curr_task_dl

・

・

・

・

・

・

・

・

・

・

・

・

rb_node

dl_runtime

dl_deadline

dl_timer

・

・

・

・

・

・

・

・

Run a EDF task

� Schedtool
� # schedtool -E -t 10000:100000 -a 0 -e ./yes

� Options
-E： a task runs on SCHED_DEADLINE
-t： <execution time> and <period> in micro seconds
-a： Affinity mask
-e： command

16TOSHIBA Confidential

� System call
� sched_setscheduler_ex()

Budget management for EDF tasks

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and runtime

System call

17TOSHIBA Confidential

Kernel

task_struct

sched_calss

dl_sched_class

enqueue_task_dl

dequeue_task_dl

sched_dl_entity
task_tick_dl

set_curr_task_dl

・

・

・

・

・

・

・

・

・

・

・

・

rb_node

dl_runtime

dl_deadline

dl_timer

・

・

・

・

・

・

・

・

Budget management for EDF tasks

� Each task on SCHED_DEADLINE has budget which
allows it to use CPU

� Budget management
� Refill budget : dl_timer (high resolution timer)

� Use budget : task_tick_dl (tick bsed)

task_tick_dl

18TOSHIBA Confidential

Wakeup time Period Wakeup time

dl_timer

Task

task_tick_dl

dl_timer

Evaluation (Period:100ms, Budget: 50ms)

19TOSHIBA Confidential

Evaluation (Period: 100ms , Budget: 10ms)

20TOSHIBA Confidential

Evaluation
� Task T1: budget 1ms period 4ms
� Task T2: budget 2ms period 6ms
� Task T3: budget 3ms period 8ms

21TOSHIBA Confidential

T1

T2

T3

20ms0ms

Compare with page 6

Evaluation (Period: 1ms, Budget: 0.5ms)

22TOSHIBA Confidential

Budget management for EDF tasks
� Each task on SCHED_DEADLINE has budget which allows it to

use CPU
� Budget management

� Refill budget : dl_timer (high resolution timer)
� Use budget : task_tick_dl (tick based)

� An Issue
� Difficult to keep task’s budget if the budget has micro seconds granularity

1.5ms 1.5ms

23TOSHIBA Confidential

Wakeup
Period

Task execution
Time

dl_timer

1.5ms

task_tick_dl
1ms

Wakeup

dl_timer

1.5ms

1ms

Step1: Refill budget

Step2: Use budget

Period

2ms

� Overview
� When a task’s budget is less than 1ms, set HRTICK for the rest of

budget

Step1: Refill budget

3.2ms

1ms 2ms 3ms

Support for micro seconds granularity

24TOSHIBA Confidential

Wakeup

Period

Task execution

Set HRTICK here

Step2: Use budget

Time

1ms 2ms 3ms

Wakeup

Evaluation (Cycle: 1ms, Budget: 0.5ms)

25TOSHIBA Confidential

Advantage and Disadvantage

� Advantage
� Easy to support high resolution budget

� Disadvantage
� Increase overhead

26TOSHIBA Confidential

Conclusion

� SCHED_DEADLINE is useful for real time systems

� An Enhancement for budget management
� Support fine grained budget such as 100 micro seconds

� HRTICK is needed to support fine grained budget

� What we’ve done:
Backport the SCHED_DEADLINE v4 to kernel v3.0-rt

27TOSHIBA Confidential

� Backport the SCHED_DEADLINE v4 to kernel v3.0-rt

� Because v3.0 is the base version of LTSI

� Implement this improvement into SCHED_DEADLINE v4 on kernel
v3.0-rt

� Forwardport it to original SCHED_DEADLINE v4

� Send a patch to the author of SCHED_DEADLINE

Thank you

28TOSHIBA Confidential

Thank you

