

Improvement of Scheduling Granularity for Deadline Scheduler

Yoshitake Kobayashi
Advanced Software Technology Group
Corporate Software Engineering Center
TOSHIBA CORPORATION

Outline

- Motivation
- Deadline scheduler
- SCHED_DEADLINE and its evaluation
- Budget management
- Conclusion

Motivation

- We would like to use Linux on control systems
- Real-time is one of the most critical topic
- Problem statement
 - Need to evaluate deeply to meet the deadline
 - CPU resource used too much by higher priority tasks

EDF scheduler

Definition of deadline

- Wakeup time: The time of an event occurred (Ex. Timer interrupt) and target task's state changed to runnable.
- **Event response time: Interrupt latency**
- Deadline: The time for a target task must finish

Earliest Deadline Fisrt scheduling (EDF)

- The earliest deadline task has the highest priority
- Task's priority is dynamically changed and managed
 - SCHED_FIFO is static priority management
- Theoretically the total CPU usage by all tasks is up to 100%
 - Includes the kernel overhead
 - If usage of CPU by all tasks is less than 100%, all tasks meet the deadline

Reference

http://en.wikipedia.org/wiki/Earliest_deadline_first_schedu ling

An example of EDF Scheduling

Task1: budget 1ms

period 8ms

■ Task2: budget 2ms period 5ms

CPU usage = 0.925%

■ Task3: budget 4ms period 10ms

Rate-Monotonic Scheduling (RMS)

One of the popular scheduling algorithm for RTOS

Assumptions for task behavior

- NO resource sharing such as hardware, a queue, or any kind of semaphore
- Deterministic deadlines are exactly equal to periods
- Static priorities (the task with the highest static priority that is runnable immediately preempts all other tasks)
- Static priorities assigned according to the rate monotonic conventions (tasks with shorter periods/deadlines are given higher priorities)
- Context switch times and other thread operations are free and have no impact on the model

CPU utilization

n: number of periodic tasks, Ti: Release period, Ci: Computation time

$$U = \sum_{i=0}^{n} C_i / T_i \le n(\sqrt[n]{2} - 1) \xrightarrow[n=\infty]{} \ln 2 \approx 0.69$$

 CPU utilization depends on the combination of periodic tasks and it is possible to meet the deadline even the CPU utilization is around 80%

Reference

http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling

Compared with the RMS scheduling

- Task1: budget 1ms period 4ms
- Task2: budget 2ms period 6ms
- Task3: budget 3ms period 8ms

CPU usage=0.958%

Comparison of deadline algorithms

	Advantage	Disadvantage
RMS	Easier to implement	Evaluation for scheduling possibility is required to meet the deadline
EDF	No evaluation for scheduling possibility is required to meet the deadline	Difficult to implement

SCHED_DEADLINE

http://www.evidence.eu.com/sched_deadline.html

- Implements the EDF scheduling algorithm
- Posted to LKML by Dario Faggioli and Juri Lelli
- Latest version is V6 (2012/10/24)
 - But V2 and V4 are used in our evaluation.

Key features of SCHED_DEADLINE

- Temporal isolation
 - The temporal behavior of each task (i.e., its ability to meet its deadlines) is not affected by the behavior of any other task in the system
 - Each task is characterized by the following aspects:
 - Budget: sched_runtime
 - Period: sched_period, equal to its deadline

Build SCHED_DEADLINE(linux kernel)

Get rt-deadline from the following place

git clone git://gitorious.org/rt-deadline (for V2)

Kernel configuration

- CONFIG_EXPERIMENTAL = y
- CONFIG_CGROUPS = y
- CONFIG_CGROUP_SCHED = n
- CONFIG_HIGH_RES_TIMERS = y
- CONFIG_PREEMPT = y
- CONFIG_PREEMPT_RT = y
- CONFIG_HZ_1000 = y

Note: For V6

git clone git://github.com/jlelli/sched-deadline.git

Overview of SCHED_DEADLINE

Overview of SCHED_DEADLINE

Setting CPU utilization for EDF tasks

- Parameters can be setted via procfs
 - CPU utilization for rt(SCHED_FIFO and SCHED_RR) and dl(SCHED_DEADLINE) should be under 100%
 - Parameters for EDF scheduler
 - /proc/sys/kernel/sched_dl_period_us
 - /proc/sys/kernel/sched_dl_runtime_us
- When a task requires more than above limit, the task cannot submit to run
- An example setting (rt: 50%, dl:50%)
 - # echo 500000 > /proc/sys/kernel/sched_rt_runtime_us (500ms)
 # echo 100000 > /proc/sys/kernel/sched_dl_period_us (100ms)
 # echo 50000 > /proc/sys/kernel/sched_dl_runtime_us (50ms)

Overview of SCHED_DEADLINE

Run a EDF task

Schedtool

- # schedtool -E -t 10000:100000 -a 0 -e ./yes
- Options
 - -E: a task runs on SCHED_DEADLINE
 - -t: <execution time> and <period> in micro seconds
 - -a: Affinity mask
 - -e: command

System call

sched_setscheduler_ex()

Budget management for EDF tasks

Budget management for EDF tasks

- Each task on SCHED_DEADLINE has budget which allows it to use CPU
- Budget management
 - Refill budget : dl_timer (high resolution timer)
 - Use budget : task_tick_dl (tick bsed)

Evaluation (Period:100ms, Budget: 50ms)

Evaluation (Period: 100ms, Budget: 10ms)

Evaluation

■ Task T1: budget 1ms period 4ms

■ Task T2: budget 2ms period 6ms

■ Task T3: budget 3ms period 8ms

Evaluation (Period: 1ms, Budget: 0.5ms)

Budget management for EDF tasks

- Each task on SCHED_DEADLINE has budget which allows it to use CPU
- Budget management
 - Refill budget : dl_timer (<u>high resolution timer</u>)
 - Use budget : task_tick_dl (tick based)
- An Issue
 - Difficult to keep task's budget if the budget has micro seconds granularity

Support for micro seconds granularity

Overview

When a task's budget is less than 1ms, set HRTICK for the rest of budget

Evaluation (Cycle: 1ms, Budget: 0.5ms)

Advantage and Disadvantage

Advantage

Easy to support high resolution budget

Disadvantage

Increase overhead

Conclusion

- SCHED_DEADLINE is useful for real time systems
- An Enhancement for budget management
 - Support fine grained budget such as 100 micro seconds
 - HRTICK is needed to support fine grained budget

What we've done:

- Backport the SCHED_DEADLINE v4 to kernel v3.0-rt
 - Because v3.0 is the base version of LTSI
- Implement this improvement into SCHED_DEADLINE v4 on kernel v3.0-rt
- Forwardport it to original SCHED_DEADLINE v4
- Send a patch to the author of SCHED_DEADLINE

Thank you