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Motivation

� We would like to use Linux on control systems

� Real-time is one of the most  critical topic

� Problem statement

� Need to evaluate deeply  to meet the deadline

� CPU resource  used  too much by higher priority tasks 
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� CPU resource  used  too much by higher priority tasks 

EDF scheduler



Definition of deadline
� Wakeup time: The time of an event occurred (Ex. Tim er interrupt)  

and target task’s state changed to runnable. 

� Event response time: Interrupt latency

� Deadline: The time for a target task must finish

Process time

Event response time
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Wakeup time
Deadline

Period

Event response time

Wakeup time



Earliest Deadline Fisrt scheduling （EDF）
� The earliest deadline task has the highest priority
� Task’s priority is dynamically changed and 

managed
� SCHED_FIFO is static priority management

� Theoretically the total CPU usage by all tasks is 
up to 100%
� Includes the kernel overhead
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� Includes the kernel overhead
� If usage of CPU by all tasks is less than 100%, all 

tasks meet the deadline

� Reference
� http://en.wikipedia.org/wiki/Earliest_deadline_first_schedu

ling



An example of EDF Scheduling

� Task1: budget 1ms period 8ms

� Task2: budget 2ms period 5ms

� Task3: budget 4ms period 10ms

T1

20ms0ms

CPU usage＝＝＝＝0.925%

＜＜＜＜ 100%
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T1

T2

T3



Rate-Monotonic Scheduling （RMS）
� One of the popular scheduling algorithm for RTOS
� Assumptions for task behavior

� NO resource sharing such as hardware, a queue, or any kind of semaphore
� Deterministic deadlines are exactly equal to periods
� Static priorities (the task with the highest static priority that is runnable

immediately preempts all other tasks)
� Static priorities assigned according to the rate monotonic conventions (tasks with 

shorter periods/deadlines are given higher priorities)
� Context switch times and other thread operations are free and have no impact on 

the model
CPU utilization
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� CPU utilization
� n: number of periodic tasks，Ti: Release period, Ci: Computation time

� CPU utilization depends on the combination of periodic tasks and it is possible to 
meet the deadline even the CPU utilization is around 80%

� Reference
� http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
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Compared with the RMS scheduling

� Task1: budget 1ms period 4ms
� Task2: budget 2ms period 6ms
� Task3: budget 3ms period 8ms

T1

T2

20ms0ms

RMS

CPU usage＝＝＝＝0.958%
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T3

deadline miss

T1

T2

T3

20ms0ms

EDF



Comparison of deadline algorithms

Advantage Disadvantage

RMS Easier to implement

Evaluation for 
scheduling possibility is 

required to meet the 
deadline
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deadline

EDF

No evaluation for 
scheduling possibility is 

required to meet the 
deadline

Difficult to implement



SCHED_DEADLINE

� http://www.evidence.eu.com/sched_deadline.html
� Implements the EDF scheduling algorithm

� Posted to LKML by Dario Faggioli and Juri Lelli

� Latest version is V6 (2012/10/24)

� But V2 and V4 are used in our evaluation.

� Key features of SCHED_DEADLINE
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� Key features of SCHED_DEADLINE
� Temporal isolation

� The temporal behavior of each task (i.e., its ability to meet its 
deadlines) is not affected by the behavior of any other task in the 
system

� Each task is characterized by the following aspects:

� Budget:  sched_runtime

� Period:  sched_period, equal to its deadline



Build SCHED_DEADLINE(linux kernel)
� Get rt-deadline from the following place

� git clone git://gitorious.org/rt-deadline (for V2)

� Kernel configuration
� CONFIG_EXPERIMENTAL = y
� CONFIG_CGROUPS = y
� CONFIG_CGROUP_SCHED = n
� CONFIG_HIGH_RES_TIMERS = y
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� CONFIG_HIGH_RES_TIMERS = y
� CONFIG_PREEMPT = y
� CONFIG_PREEMPT_RT = y
� CONFIG_HZ_1000 = y

� Note: For V6
� git clone git://github.com/jlelli/sched-deadline.git



Overview of SCHED_DEADLINE

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and budget

System call
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Kernel

task_struct

sched_calss

dl_sched_class

enqueue_task_dl

dequeue_task_dl

sched_dl_entity
task_tick_dl

set_curr_task_dl
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rb_node

dl_runtime

dl_deadline

dl_timer

・
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・

・

・
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・

・
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Setting CPU utilization for EDF tasks

� Parameters can be setted via procfs
� CPU utilization for rt(SCHED_FIFO and SCHED_RR) and 

dl(SCHED_DEADLINE) should be under 100%

� Parameters for EDF scheduler

� /proc/sys/kernel/sched_dl_period_us

� /proc/sys/kernel/sched_dl_runtime_us

� When a task requires more than above limit, the tas k 
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� When a task requires more than above limit, the tas k 
cannot submit to run

� An example setting  (rt: 50%, dl:50% ））））

� # echo 500000 > /proc/sys/kernel/sched_rt_runtime_us (500ms)
# echo 100000 > /proc/sys/kernel/sched_dl_period_us (100ms)
# echo 50000 > /proc/sys/kernel/sched_dl_runtime_us (50ms)



Overview of SCHED_DEADLINE

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set  deadline
and runtime

System call
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Run a EDF task

� Schedtool
� # schedtool -E -t 10000:100000 -a 0 -e ./yes

� Options
-E： a task runs on SCHED_DEADLINE
-t： <execution time> and <period> in micro seconds
-a： Affinity mask
-e： command
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� System call
� sched_setscheduler_ex()



Budget management for EDF tasks

EDF task User

sysctl_sched_dl_runtime

sysctl_sched_dl_period

procfs

Set parameters for
SCHED_DEADLINE

sched_prama_ex

Set deadline
and runtime

System call
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Budget management for EDF tasks

� Each task on SCHED_DEADLINE has budget which 
allows it to use CPU

� Budget management
� Refill budget : dl_timer ( high resolution timer )

� Use budget : task_tick_dl ( tick bsed )

task_tick_dl
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Wakeup time Period Wakeup time

dl_timer

Task

task_tick_dl

dl_timer



Evaluation (Period:100ms, Budget: 50ms)
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Evaluation (Period: 100ms , Budget: 10ms)
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Evaluation
� Task T1: budget 1ms period 4ms
� Task T2: budget 2ms period 6ms
� Task T3: budget 3ms period 8ms
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T1

T2

T3

20ms0ms

Compare with page 6



Evaluation (Period: 1ms, Budget: 0.5ms)
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Budget management for EDF tasks
� Each task on SCHED_DEADLINE has budget which allows   it to 

use CPU
� Budget  management

� Refill budget : dl_timer ( high resolution timer )
� Use budget : task_tick_dl ( tick based )

� An Issue
� Difficult to keep task’s budget if the budget has micro seconds granularity

1.5ms 1.5ms
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Wakeup
Period

Task execution
Time

dl_timer

1.5ms

task_tick_dl
1ms

Wakeup

dl_timer

1.5ms

1ms

Step1: Refill budget 

Step2: Use budget

Period

2ms



� Overview
� When a task’s budget is less than 1ms, set HRTICK for the rest of 

budget

Step1: Refill budget 

3.2ms

1ms 2ms 3ms

Support for micro seconds granularity
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Wakeup

Period

Task execution

Set HRTICK here

Step2: Use budget

Time

1ms 2ms 3ms

Wakeup



Evaluation (Cycle: 1ms, Budget: 0.5ms)
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Advantage and Disadvantage

� Advantage
� Easy to support high resolution budget

� Disadvantage
� Increase overhead
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Conclusion

� SCHED_DEADLINE is useful for real time systems

� An Enhancement for budget management
� Support fine grained budget such as 100 micro seconds

� HRTICK is needed to support fine grained budget

� What we’ve done:
Backport the SCHED_DEADLINE v4 to kernel v3.0-rt
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� Backport the SCHED_DEADLINE v4 to kernel v3.0-rt

� Because v3.0 is the base version of LTSI

� Implement this improvement into SCHED_DEADLINE v4 on kernel 
v3.0-rt

� Forwardport it to original SCHED_DEADLINE v4

� Send a patch to the author of SCHED_DEADLINE



Thank you
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Thank you


