
Introduction to the
Yocto Project
Accelerating Embedded Product Development

Rudolf J Streif

The smallest unit of measure,

equal to one septillionth (10-24).

[yoc-to]

3/64 © 2015 The Yocto Project

The Yocto Project Ecosystem

What it is, who we are, and why you should care...

© 2015 The Yocto Project

The Yocto Project is not an Embedded Linux Distribution.
It creates a custom one for You!

The Yocto Project is not Single Open Source Project.
It is an Ecosystem.

The Yocto Project combines the convenience of a ready-to-run Linux
Distribution with the flexibility of a custom Linux operating system

stack.

4/61

© 2015 The Yocto Project

Embedded Linux – Why is it Challenging?

• DIY/Roll-Your-Own or Modify Mainstream Distro
• Long Term Maintenance is difficult

• Upstream Changes are difficult to track

• Not embedded friendly

• Licensing issues

• No commercial embedded support

• Build System and Cross Toolchain Challenges

• Commercial/Community Embedded Linux

• Too many competing systems

• Incompatible distributions/build systems

Developers spend lots of time porting or making
build systems

Leaves less time and resources to develop value-
adding software features

5/61

© 2015 The Yocto Project

Embedded Linux Landscape (1)

Android – http://source.android.com
● Great for systems with ARM-based SoCs and touch

screens
● Build system and development tools

Ångström Distribution – http://www.angstrom-distribution.org
● Community distribution with a growing list of supported

development boards
● Yocto Project build environment
● Online builder Narcissus

Buildroot – http://buildroot.uclibc.org
● GNU make-based build system
● uClibc target library
● BusyBox command line utility applications

Baserock – http://wiki.baserock.org
● Targeted for embedded appliances
● Native Builds for x86, x86_64, ARMv7

6/61

© 2015 The Yocto Project

Embedded Linux Landscape (2)

OpenEmbedded – http://www.openembedded.org
● Created by merging OpenZaurus with contributions

from Familiar Linux, OpenSIMPad
● Based on BitBake build engine

OpenWrt – http://www.openwrt.org
● Debuted as open source OS for embedded devices

routing network traffic
● Originally created from Linksys GPL sources for their

WRT54G residential gateway
● Buildroot-based build environment
● Headless operation with web UI

The Yocto Project – http://www.yoctoproject.org
● Details to follow

Commercial Distributions
● Various solutions from different vendors for different applications
● Commercial support for toolchain and operating system stack

7/61

© 2015 The Yocto Project

What is the Yocto Project?

© 2013 The Linux Foundation. All rights reserved

• Open source project with a strong community
• A collection of embedded projects and tooling

• Place for Industry to publish BSPs

• Application Development Tools including Eclipse plug-ins
and emulators

• Key project is the reference distribution build
environment (Poky)
• Complete Build System for Linux OS

• Releases every 6 months with latest (but stable) kernel
(LTSI), toolchain, and package versions

• Full documentation representative of a consistent system

It’s not an embedded Linux distribution –
it creates a custom one for you

8/61

© 2015 The Yocto Project

What the Yocto Project Provides

• The industry needed a common build system
and core technology
• Bitbake and OpenEmbedded build system

• The benefit of doing so is:
• Designed for the long term

• Designed for embedded

• Transparent Upstream changes

• Vibrant Developer Community

• Less time spent on things which don’t make
money (build system, core Linux components)

• More time spent on things which do make money
(app development, product development, …)

© 2015 The Yocto Project

Who is the Yocto Project?

• Advisory Board and Technical Leadership
• Organized under the Linux Foundation
• Individual Developers
• Embedded Hardware Companies
• Semiconductor Manufacturers
• Embedded Operating System Vendors
• OpenEmbedded / LTSI Community

Member Organizations

http://www.yoctoproject.org/ecosystem
10/61

Supporting Organizations

© 2015 The Yocto Project

Why Should a Developer Care? (1)

• Build a complete Linux system –from source– in
about an hour (about 90 minutes with X)
• Multiple cores (i.e. quad i7)

• Lots of RAM (i.e. 16 GB of ram or more)

• Fast disk (RAID, SSD, etc…)

• Start with a validated collection of software
(toolchain, kernel, user space)

• Blueprints to get you started quickly and that you can
customize for your own needs

• We distinguish app developers from system
developers and we support both

• Access to a great collection of app developer tools
(performance, debug, power analysis, Eclipse)

11/61

© 2015 The Yocto Project

Why Should a Developer Care? (2)

• Supports all major embedded architectures

• x86, x86-64, ARM, PPC, MIPS

• Coming soon, MIPS64 and ARM Arch 64

• Advanced kernel development tools

• Layer model encourages modular development,
reuse, and easy customizations

• Compatibility program that is used to encourage
interoperability and best practices

12/61

© 2015 The Yocto Project

Build System Upstream
Components

Yocto Project Provides Embedded Tools, Best
Practices, and Reference Implementation

Poky Build Output

Yocto Project
Components

Upstream Projects

13/61

© 2015 The Yocto Project

The Yocto Project Family

• Poky – Yocto Project Reference Build System

• BitBake – Build Engine

• Hob – Graphical User Interface for BitBake

• OpenEmbedded Core – Shared Base Layer of Recipes and Classes

• Application Development Toolkit (ADT) – Development environment
for user-space applications to run on OS stacks built by Poky

• Eclipse IDE Plugin – Integration of ADT into the Eclipse IDE

• EGLIBC – Embedded variant of the GNU C Library

• Matchbox – X Windows-based open source graphical UI for
embedded devices

• Autobuilder – Automation for Yocto Project build tests and QA

• Build Appliance – Virtual machine image to try out the Yocto Project
and Poky

• Pseudo – System administrator simulation environment

• Swabber – Host leakage detection tool

14/61

© 2015 The Yocto Project

Yocto Project and OpenEmbedded
OpenEmbedded

● Created by merging the work of the OpenZaurus project with
contributions from other projects such as Familiar Linux and
OpenSIMpad into a common code base

● Community project focusing on broad hardware and architectures
● Large library of recipes to cross-compile over 1000 packages
● Switched from flat meta-data architecture (OpenEmbedded Classic),

to layered architecture based on OpenEmbedded Core layer, which
is in common with the Yocto Project and the Angstrom Distribution

Yocto Project
● Family of projects for developing Linux-based devices
● Self-contained build environment providing tools and blueprints for

building Linux OS stacks
● Supported by silicon vendors, OSVs (also providing commercial

support), open source projects for hardware and software,
electronics companies

● Standardized components with compliance program
● Focused on tooling and maintenance with two major releases every

6 months
15/61

© 2015 The Yocto Project

Why not just use OpenEmbedded?

• OpenEmbedded is an Open Source Project providing
a Build Framework for Embedded Linux Systems
• Not a reference distribution

• Designed to be the foundation for others

• Cutting-edge technologies and software packages

• The Yocto Project is focused on enabling Commercial
Product Development
• Provides a reference distribution policy and root file system

blueprints

• Co-maintains OpenEmbedded components and improves
their quality

• Provides additional tooling such as Autobuilder and QA
Tests

• Provides tools for application development such as ADT and
Eclipse Plugin

16/61

© 2015 The Yocto Project

The Yocto Project Ecosystem

Product Showcase
● Hardware Platforms
● Distributions – Open Source and Commercial
● Projects – Open Source Project using the Yocto Project

Participants
● Organizations who participate in the Yocto Project Compliance Program
● They also support the project through contributions and engineering

resources

Member Organizations
● Organizations who provide the administrative leadership of the Yocto Project
● Their support includes membership dues for infrastructure etc. and

engineering resources
● Members of the Yocto Project Advisory Board

Supporting Organizations
● Organizations who support the Yocto Project through contributions, product

development, etc.

17/61

© 2015 The Yocto Project

Yocto Project Branding and Compliance
Program

Goals
● Strengthen the Yocto Project through a consistent branding.
● Provide recognition to participating organizations.
● Reduce fragmentation in the embedded Linux market by

encouraging collaborative development of a common set of tools,
standards, and practices and ensure that these tools, standards,
and practices are architecturally independent as much as possible.

Yocto Project Participant
● Organizations and entities who use and support the Yocto Project

publicly.
● Open to open source projects, non-profit organizations, small

companies, and Yocto Project member organizations.

Yocto Project Compatible
● Products, BSPs, OpenEmbedded-compatible layers and other open

source software projects that are built and work with the Yocto
Project.

● These products and components must be submitted by open source
projects, non-profit entities, or Yocto Project member organizations.

18/61

© 2015 The Yocto Project

The Yocto Project Community

19/61

20/64 © 2015 The Yocto Project

Getting Started

All you need to know to get your feet wet and a
little beyond...

© 2015 The Yocto Project

Quick Start

© 2012 The Linux Foundation. All rights reserved

1. Go to http://yoctoproject.org click “Documentation”
and read the Quick Start guide

2. Set up your Linux build system with the necessary
packages (and firewall as needed)

3. Go to http://www.yoctoproject.org click
“downloads” and download the latest stable
release (Yocto Project 1.6.1 “Daisy” 11.0.1) – extract
the download on your build machine

4. Source oe-init-build-env script

5. Edit conf/local.conf and set MACHINE,
BB_NUMBER_THREADS and PARALLEL_MAKE

6. Run bitbake core-image-sato

7. Run runqemu qemux86 (if MACHINE=qemux86)

21/61

© 2015 The Yocto Project

Build System Workflow

OpenEmbedded Architecture
Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

22/61

© 2015 The Yocto Project

Layers (1)

• The build system is composed of layers

23/61

© 2015 The Yocto Project

Layers (2)

• Layers are containers for the building blocks used
to construct the system

LEGO is a trademark of the LEGO Group

24/61

© 2015 The Yocto Project

Layers (3)

• Layers are a way to manage extensions, and
customizations to the system

• Layers can extend, add, replace or modify recipes
• Layers can add or replace bbclass files
• Layers can add or modify configuration settings
• Layers are added via BBLAYERS variable in

build/conf/bblayers.conf

• Best Practice: Layers should be grouped by
functionality

• Custom Toolchains (compilers, debuggers, profiling tools)
• Distribution specifications (i.e. meta-yocto)
• BSP/Machine settings (i.e. meta-yocto-bsp)
• Functional areas (selinux, networking, etc)
• Project specific changes

25/61

© 2015 The Yocto Project

All starts with the Configuration

OpenEmbedded Architecture
Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

26/61

© 2015 The Yocto Project

Configuration

• Configuration files (*.conf) – global build
settings

• meta/conf/bitbake.conf (defaults)
• build/conf/bblayers.conf (layers)
• */conf/layers.conf (one per layer)
• build/conf/local.conf (local user-defined)
• meta-yocto/conf/distro/poky.conf (distribution

policy)
• meta-yocto-bsp/conf/machine/beagleboard.conf

(BSP)
• meta/conf/machine/include/tune-cortexa8.inc

(CPU)
• Recipes (metadata)

User
Configuration

Recipes

Machine
Configuration

Distro Policy
Configuration

27/61

© 2015 The Yocto Project

User Configuration

• build/conf/local.conf is where you override
and define what you are building

• BB_NUMBER_THREADS and
PARALLEL_MAKE

• MACHINE settings
• DISTRO settings
• INCOMPATIBLE_LICENSE = “GPLv3”
• EXTRA_IMAGE_FEATURES

• build/conf/bblayers.conf is where you
configure with layers to use

• Add Yocto Project Compatible layers to the
BBLAYERS

• Default: meta (oe-core), meta-yocto and meta-
yocto-bsp

User
Configuration

Recipes

Machine
Configuration

Distro Policy
Configuration

28/61

© 2015 The Yocto Project

Recipes

© 2012 The Linux Foundation. All rights reserved

• Build Instructions
• Recipes for building packages
• Recipe Files

• meta/recipes-core/busybox_1.20.2.bb
• Patches and Supplemental Files

• Location
• meta/recipes-core/busybox/busybox-1.20.2

• Recipes inherit the system configuration and
adjust it to describe how to build and package
the software

• Recipes can be extended and enhanced
through append-files from other layers

• Yocto Project and OpenEmbedded recipes
structures are compatible to each other

User
Configuration

Machine
Configuration

Distro Policy
Configuration

Recipes

29/61

© 2015 The Yocto Project

Machine Configuration

• Configuration files that describe a machine
• Define board specific kernel configuration
• Formfactor configurations
• Processor/SOC Tuning files

• Hardware machines and emulated machines
(QEMU)

• Eg, meta-yocto-
bsp/conf/machine/beagleboard.conf

• Machine configuration refers to kernel sources
and may influence some userspace software

• Compatible with OpenEmbedded

User
Configuration

Recipes

Distro Policy
Configuration

Machine
Configuration

30/61

© 2015 The Yocto Project

Distribution Policy

© 2012 The Linux Foundation. All rights reserved

• Defines distribution/system wide policies
that affect the way individual recipes are
built

• May set alternative preferred versions of recipes

• May enable/disable LIBC functionality (i.e. i18n)

• May enable/disable features (i.e. pam, selinux)

• May configure specific package rules

• May adjust image deployment settings

• Enabled via the DISTRO setting
• Four predefined settings

• poky-bleeding: Enable a bleeding edge packages
• poky: Core distribution definition, defines the base

• poky-lsb: enable items required for LSB support
• poky-tiny: construct a smaller then normal system

User
Configuration

Recipes

Machine
Configuration

Distro Policy
Configuration

31/61

© 2015 The Yocto Project

How does it work? In-depth build process

OpenEmbedded Architecture
Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

32/61

© 2015 The Yocto Project

Source Fetching

• Recipes call out the location of all sources, patches and files.
These may exist on the internal or be local. (See SRC_URI in
the *.bb files)

• Bitbake can get the sources from git, svn, bzr, tarballs, and
many more*

• Versions of packages can be fixed or updated automatically
(Add SRCREV_pn-PN = “${AUTOREV}” to local.conf)

• The Yocto Project mirrors sources to ensure source reliability

* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc, repo, ssh, and svk and
the unpacker can cope with tarballs, zip, rar, xz, gz, bz2, and so on.

33/61

© 2015 The Yocto Project

Source Unpacking and Patching

• Once sources are obtained, they are extracted
• Patches are applied in the order they appear in SRC_URI

• quilt is used to apply patches

• This is where local integration patches are applied
• We encourage all patch authors to contribute their patches

upstream whenever possible
• Patches are documented according to the patch guidelines:

http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines

34/61

© 2015 The Yocto Project

Configure / Compile / Install

• Recipe specifies configuration and compilation rules
• Various standard build rules are available, such as autotools and gettext
• Standard ways to specify custom environment flags
• Install step runs under ‘pseudo’, allows special files, permissions and

owners/groups to be set

• Recipe example

SUMMARY = "GNU Helloworld Application“

SECTION = "examples"

LICENSE = "GPLv2+"

LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"

PR = "r0"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

35/61

© 2015 The Yocto Project

Output Analysis / Packaging

• Output Analysis:
• Categorize generated software (debug, dev, docs, locales)
• Split runtime and debug information

• Perform QA tests (sanity checks)
• Package Generation:

• Support the popular formats, RPM, Debian, and ipk
• Set preferred format using PACKAGE_CLASSES in local.conf
• Package files can be manually defined to override automatic settings

36/61

© 2015 The Yocto Project

Image Generation

• Images are constructed using the packages built earlier and
put into the Package Feeds

• Decisions of what to install on the image is based on the
minimum defined set of required components in an image
recipe. This minimum set is then expanded based on
dependencies to produce a package solution.

• Images may be generated in a variety of formats (tar.bz2, ext2,
ext3, jffs, etc…)

37/61

© 2015 The Yocto Project

SDK Generation

• A specific SDK recipe may be created. This allows
someone to build an SDK with specific interfaces in it.
(i.e. meta-toolchain-gmae)

• SDK may be based on the contents of the image generation
• SDK contains native applications, cross toolchain and

installation scripts
• May be used by the Eclipse Application Developer Tool to

enable App Developers

• May contain a QEMU target emulation to assist app developers

38/61

© 2015 The Yocto Project

Build System Workflow

OpenEmbedded Architecture
Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

39/61

© 2015 The Yocto Project

HOB – A GUI for BitBake

40/61

● Configure Target Image
● Target Machine
● Base Image
● Package Selections
● Root File Systems
● Packaging Systems

● Configure Build Environment
● Output Directories
● Source Mirrors
● Parallel Processing Options

● Launch Build Process
● Review Logs and Build Results
● Deploy Build Results

hob /häb/
1. Noun: A flat metal shelf at the side or back of a fireplace, having its

surface level with the top of the grate.
2. A sprite of hobgoblin.

© 2015 The Yocto Project

Toaster – A Web GUI for BitBake

41/61

● Build Analysis Tool
● Build Data Collection
● Database Storage
● Local and Remote Usage
● Requires BitBake Knotty or HOB to configure and

launch builds
● Django Data Models/Web Interface

● Local Usage
● Install Django 1.6 and South 0.8.4

• $ pip install django==1.6
• $ pip install south==0.8.4

● Source Build Environment
• $ source poky/oe-init-build-env build

● Launch Toaster
• $ source toaster start

● Launch Build
• $ bitbake -k core-image-sato

● View Build Results
• $ xdg-open http://localhost:8000

● Stop Toaster
• $ source toaster stop

http://localhost:8000/

© 2015 The Yocto Project

Application Development Toolkit

42/61

Core Components
● Cross Development Toolchain
● System Root
● QEMU Emulator

Eclipse Plugin
● Roundtrip Application Development
● Toolchain/System Root Integration
● Emulated and Hardware Targets
● Application Templates
● On-target Debugging

Profiling Tools
● LatencyTOP
● PowerTOP
● OProfile
● Perf
● SystemTap
● Lttng-ust

43/64 © 2015 The Yocto Project

Special Topics

The Nitty Gritty in Fast Forward Mode

© 2015 The Yocto Project

Troubleshooting

• Task Run Files
• BitBake creates a shell script for each task.

• Contains the environment variable settings and the shell and
Python functions that are executed.

• Task Log Files
• Each task produces a log file that contains all the output from the

commands run.

• Running Specific Tasks for a Recipe
• bitbake <recipe> -c <task>

• Dependency Graphs / Dependency Explorer
• bitbake -g <target>

• bitbake -g -u depexp <target>

• Developer Shell

• bitbake <recipe> -c devshell

44/61

© 2015 The Yocto Project

Customizing Root File System Images

• Extending a Pre-defined Image
• Local Configuration Method

• EXTRA_IMAGE_INSTALL in conf/local.conf

• Recipe Method

• Write a recipe that includes another image recipe file

• Inherit from Core-Image
• Write a recipe that inherits from the core­image class

• Package Groups
• Write package group recipes that combine multiple packages into

logical entities.

• Use the package group in IMAGE_INSTALL.

45/61

require recipes­core/images/core­image­base.bb
IMAGE_INSTALL += “strace”

IMAGE_INSTALL = “packagegroup­core­boot packagegroup­base­extended”
Inherit core­image

© 2015 The Yocto Project

Package Groups

• Package Group Recipe

• Image Recipe

46/61

DESCRIPTION = “My Package Group”
LICENSE = “MIT”
LIC_FILES_CHECKSUM = “file://<licfile>;md5=<chksum>

inherit packagegroup

PROVIDES = “${PACKAGES}”

PACKAGES = “packagegroup­mypkg­apps packagegroup­mypkg­tools”

RDEPENDS_packagegroup­mypkg­apps = “sqlite3 python­core python­sqlite3”
RDEPENDS_pacakgegroup­mypkg­tools = “sudo gzip tar”

IMAGE_INSTALL = “packagegroup­core­boot packagegroup­mypkg­apps”
Inherit core­image

file:///

© 2015 The Yocto Project

Layers Revisited - Conventions

• Why layers?
• Layers were not always supported by BitBake and

OpenEmbedded Classic used a flat hierarchy for all of its
meta data.

• Layers provide a mechanism to isolate meta data according
to functionality, for instance BSPs, distribution configuration,
etc.

• Layers allow to easily to add entire sets of meta data and/or
replace sets with other sets.

• Conventions and Best Practices for Layers
• Use layers for your own projects

• Name your layer meta-<layername>

• Group your recipes and other meta data

• Append don't overlay

• Include don't duplicate
47/61

© 2015 The Yocto Project

Layers Revisited – Creating a Layer

• Layers as easy as 1-2-3
• Create layer directory layout

• Add the layer configuration file

• Add the layer to your build environment

• Template for layer.conf

• Correct ordering of layers in
BBLAYERS is important

We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes­* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes­*/*/*.bb
 ${LAYERDIR}/recipes­*/*/*.bbappend"

BBFILE_COLLECTIONS += "layername"
BBFILE_PATTERN_layername = "^${LAYERDIR}/"
BBFILE_PRIORITY_layername = "1"

This should only be incremented on significant
changes that will
cause compatibility issues with other layers
LAYERVERSION_layername = "1"

LAYERDEPENDS_layername = "core"

48/61

© 2015 The Yocto Project

Yocto Project BSP - Architecture

Yocto Project BSP Anatomy
● Configuration and recipes for hardware platforms
● Dependent on core layers
● Extend core layer recipes and configuration
● Do not contain build system and/or tools

Standardized Layout
● Binary images
● Machine configuration
● Documentation
● Bootloader, kernel, graphics subsystem recipes
● Source patches
● License

BSP Tools
● Create BSP layers for various architectures and

kernel configurations
● Kernel configuration and patch management

49/61

© 2015 The Yocto Project

Consuming a Yocto Project BSP

• Read the README – no kidding
• BSP dependencies

• Build instructions

• Create and Configure Build Environment
• oe-init-build-env mybuild

• Add BSP layer to BBLAYERS variable in
mybuild/conf/bblayers.conf

• Correct order of layers in BBLAYERS is of significance:
applications, distribution, BSP, core

• Configure MACHINE in mybuild/conf/local.conf

• Launch Build
• Bitbake -k <image-target>

50/61

© 2015 The Yocto Project

Building a Yocto Project BSP

• Three Approaches
• Manually from Scratch

• Most challenging

• Could make sense if no BSPs for similar hardware
exist

• Copying and Modifying an Existing BSP Layer

• For similar hardware but it could make more sense to
just extend the existing BSP

• Using the Yocto Project BSP Scripts

• Interactive scripts to build a BSP using the Yocto
Project kernel infrastructure

• A BSP is not required to use the Yocto Project kernel
infrastructure and tooling
• However, using it provides benefits such as maintenance.

51/61

© 2015 The Yocto Project

Yocto Project Kernel Development

• There is no Yocto Project Kernel
• Uses upstream Linux kernels from kernel.org and clone

them into Yocto Project kernel repositories

• Recipes and tooling point to the Yocto Project kernel
repositories.

• Yocto Project adds machine meta data, configuration,
patches on top.

• Multiple ways of building the kernel
• Traditional OpenEmbedded Kernel Recipes building from

kernel tarball

• Custom Linux Yocto Kernel Recipes building from any
kernel GIT repository

• Linux Yocto Kernel Infrastructure Recipes building from
Yocto Project GIT kernel repository

52/61

© 2015 The Yocto Project

Traditional OE Kernel Method - Overview

53/61

© 2015 The Yocto Project

Traditional OE Kernel Method - Recipe

54/61

DESCRIPTION = "Bleeding Edge Linux Kernel"
SECTION = "kernel"
LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://COPYING;md5=<chksum>"

inherit kernel

KVER = "${PV}­rc5"

LINUX_VERSION ?= "3.11.0"
LINUX_VERSION_EXTENSION ?= "­custom"

SRC_FILE = “${KERNELORG_MIRROR}/linux/kernel/v3.x/testing/linux­${KVER}.tar.xz”
SRC_URI = "${SRC_FILE};name=kernel \
 file://defconfig"

S = "${WORKDIR}/linux­${KVER}"

SRC_URI[kernel.md5sum] = "<chksum>"
SRC_URI[kernel.sha256sum] = "<chksum>"

© 2015 The Yocto Project

Linux Yocto Custom Method - Overview

55/61

© 2015 The Yocto Project

Linux Yocto Custom Method - Recipe

56/61

inherit kernel
require recipes­kernel/linux/linux­yocto.inc

SRC_URI = "git://arago­project.org/git/projects/linux­
am33x.git;protocol=git;bareclone=1"

SRC_URI += "file://defconfig"
SRC_URI += "file://am335x­pm­firmware.bin"

SRC_URI += "file://beaglebone.scc \
 file://beaglebone.cfg \
 file://beaglebone­user­config.cfg \
 file://beaglebone­user­patches.scc \
 "

KBRANCH = "v3.2­staging"

LINUX_VERSION ?= "3.2.31"
LINUX_VERSION_EXTENSION ?= "­bbone"

SRCREV = "720e07b4c1f687b61b147b31c698cb6816d72f01"

PR = "r1"
PV = "${LINUX_VERSION}+git${SRCPV}"

COMPATIBLE_MACHINE_beaglebone = "beaglebone"

do_compile_prepend() {
 cp ${WORKDIR}/am335x­pm­firmware.bin ${S}/firmware/
}

© 2015 The Yocto Project

Linux Yocto Kernel Method - Overview

57/61

© 2015 The Yocto Project

Linux Yocto Kernel Method - Recipe

58/61

require recipes­kernel/linux/linux­yocto.inc

KBRANCH_DEFAULT = "standard/base"
KBRANCH = "${KBRANCH_DEFAULT}"

SRCREV_machine_qemuarm ?= "8fb1a478c9a05362e2e4e62fc30f5ef5d6c21f49"
SRCREV_machine_qemumips ?= "b8870f2b11f4c948ae90a19886335fa8b7fca487"
SRCREV_machine_qemuppc ?= "e4c12f12e61a29b6605c4fcbcfd6dbe18bd7b4e4"
SRCREV_machine_qemux86 ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"
SRCREV_machine_qemux86­64 ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"
SRCREV_machine ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"
SRCREV_meta ?= "8482dcdf68f9f7501118f4c01fdcb8f851882997"

SRC_URI = "git://git.yoctoproject.org/linux­yocto­3.8.git;protocol=git;bareclone=1;\
branch=${KBRANCH},${KMETA};name=machine,meta"

LINUX_VERSION ?= "3.8.11"

PR = "${INC_PR}.1"
PV = "${LINUX_VERSION}+git${SRCPV}"

KMETA = "meta"

COMPATIBLE_MACHINE = "qemuarm|qemux86|qemuppc|qemumips|qemux86­64"

© 2015 The Yocto Project

• You have a kernel tarball and a defconfig
• Use linux-yocto-custom recipe template

• Straightforward and easy to use

• You have a GIT kernel repository and a defconfig
• Use linux-yocto-custom recipe template with GIT

• Gives you the ability to add patches and configuration
fragments using the Yocto Project kernel tooling

• You are starting a new BSP project
• Consider using the Yocto Project kernel infrastructure,

repositories and tooling

• Get the advantage of an continuously updated and
maintained kernel

• Leverage the kernel types, feature and configuration pool of
the meta kernel branch

59/61

When to Use What Kernel Building Method

60/64 © 2015 The Yocto Project

La Fin

Done for today but there is much more...

© 2015 The Yocto Project

The Takeaway

Embedded Systems are Diverse
● Unless you are using standard hardware you will have to adapt and build

your own operating system stack.
● Building and maintaining every aspect of an OS stack requires a lot of

expertise and resources.

The Yocto Project
● Provides a self-contained and rigorously tested build environment with

tools, recipes and configuration data to build custom Linux OS stacks.
● Includes distribution blueprints (default configuration and policies) that

enable quick ramp-up.
● Is supported and sustained by a growing community of contributors

composed of silicon vendors, Linux OSVs, open source projects etc.
providing BSPs, commercial and community support.

● Maintains stable Linux kernels with security and functionality patches.
● Provides standard format for BSPs and recipes to make them

exchangeable.
● Allows you to draw from the expertise and experience of the Yocto

developers while being able to easily customize, modify and extend to
meet your own requirements.

● Scales from individual developer to engineering organizations.

61/61

© 2015 The Yocto Project

Resources and References

Yocto Project
● Website: https://www.yoctoproject.org
● Wiki: https://wiki.yoctoproject.org/wiki/Main_Page
● Downloads: https://www.yoctoproject.org/downloads
● GIT Repository: http://git.yoctoproject.org

OpenEmbedded
● Website/Wiki: http://www.openembedded.org/wiki/Main_Page
● GIT Repository: http://cgit.openembedded.org

Publications
● Yocto Project – Big in Embedded Linux:

http://go.linuxfoundation.org/Yocto-Big-In-Embedded
● How Engineering Leaders Can Use The Yocto Project to Solve

Common Embedded Linux Challenges:
http://go.linuxfoundation.org/Yocto-Publication

62/61

© 2015 The Yocto Project© 2012 The Linux Foundation. All rights reserved

Collaboration is the key to success

Spend less time and resources to develop and
maintain the commodity software.

Collaborate with other organizations instead
and share the workload.

Be able to spend more time and use the
resources you already have to create your

products and value added components!

63/61

Thank you for your
participation!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

