
CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 1

CELF Audio Video Graphics Specification
v2.0

Document: CelfAudioVideoGraphicsSpec2_accepted_20060606

This is an accepted specification of the CE Linux Forum.
Send comments on this version to:
celinux-dev@tree.celinuxforum.org
or AVGWG@list.celinuxforum.org (CELF forum members)

mailto:celinux-dev@tree.celinuxforum.org
mailto:AVGWG@list.celinuxforum.org

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 2

Revision History
Revision Comment Reviewer Editor Date

Draft1 Initial version Ruud Derwig 2005-11-07

Draft2 Filled in Audio,
Video and
Graphics parts

 Christophe Hoeppe,
John Vugts

2005-11-29

Draft3 Added work in
progress

 Ruud Derwig 2005-12-01

Draft4 Changed e-mail
address for non-
member feedback

AVG WG:
Mitsubishi,
NVIDIA, Philips,
Samsung, ST

Ruud Derwig 2005-12-13

Draft5 Incorporated AVG
WG feedback

AVG WG Ruud Derwig,
Christophe Hoeppe

2006-02-13

Proposed1 AVG WG
feedback, changed
[M] into [S]

AVG WG Ruud Derwig 2006-03-09

Accepted Approved version CELF BoD Ruud Derwig 2006-06-06

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 3

0. Intro .. 4

1. Rationale... 5
1.1 References.. 6

2. Terminology ... 7
2.1 Acronyms and terms... 7
2.2 Compliance classifiers .. 8

3. Specification ... 9
3.1 Audio .. 9

3.1.1 Rationale... 9
3.1.2 Specification ..10
3.1.3 Notes..11
3.1.4 References ...13

3.2 Video .. 14
3.2.1 Rationale..14
3.2.2 Specification ..15
3.2.3 Notes..17
3.2.4 References ...21

3.3 Graphics... 22
3.3.1 Rationale..22
3.3.2 Specification ..22
3.3.3 Notes..23
3.3.4 References ...24

4. Work in progress .. 25
4.1 Graphics... 25
4.2 Media Processing Frameworks.. 25

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 4

0. Intro
Audio, video, and graphics processing is at the core of many CE products. The AVG requirements for CE
devices are different than those for PCs/Servers, notably with respect to available resources (e.g. a general
CPU v.s. dedicated HW to perform certain tasks), footprint, input devices, interlacing, streaming, etc..
Multiple graphics planes and video planes may be combined using, e.g., alpha blending.

Different platform vendors develop different hardware platforms using the Linux operating system that can
be integrated with middleware software in various Audio/Video consumer products by the CE equipment
manufacturers. Today for each hardware platform, a different code base is developed, each one providing
its own, specific platform API. As a result, the different CE equipment manufacturers each have to do a
major investment for creating Audio/Video products using the different platform APIs.

The CELF forum and specifically the Audio Video and Graphics WG is specifying a common set of
software interfaces that can be used by multiple platform vendors and CE equipment manufacturers and as
such reduce the overall investment required to implement the Audio/Video products. This common API
approach supports the development of open and shared assets for this industry.

The common API should support a wide range of products (e.g. digital Set Top Boxes or TV sets, and
mobile phones) to maximise the gain of using the API. It should also support a wide range of different
platform implementations and implementation techniques (e.g hardware or software media processing) to
allow for a wide adoption and use of the API. The API should efficiently support the relevant existing
middleware stacks in e.g. digital TV products to allow the usage of existing assets.

For CE products the costs of the product with reference to e.g. Silicon size, CPU cycles, Power
consumption, Required Memory and Memory bandwidth are of critical importance. Therefore it should be
possible to implement a common API in a very efficient way. The API should support HW acceleration to
reduce the possible load on the CPU in such a product. Furthermore, the API should be very scalable to be
able to scale from low-end standard products to high-end and more featured products.

A common, consistent and well-defined CELF AVG API is required to enable the different parties to
concentrate on the added value of their business. A semiconductor company can concentrate on making a
cost effective implementation of this interface. A middleware company can make use of the economy of
scale by deploying their middleware on a larger base of products, and they can focus on the middleware
services instead of spending time on porting to different APIs. A CE company can select assets from
multiple vendors and can focus on adding their specific features to their integrated product.

The CELF AVG API should fit in with the Linux operating system and should fit with Linux existing
solutions, especially the ones that were part of the current AVG spec 1.0. However, the goal of this
specification is to provide direction and reduce fragmentation, so choices do need to be made. Having a
well defined, well supported interface for AVG devices will reduce fragmentation of solutions and
encourage the CE community to develop solutions that apply to conforming interfaces, so that they can be
deployed across a wider range of systems.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 5

1. Rationale
It is the goal of this specification to make choices and provide direction for selecting the Audio, Video and
Graphics interfaces to be used in CE products. Making choices is always difficult, especially when the
playing field for a part already established and the existing solutions are so heterogeneous, many and
disperse as in the Linux audio, video, graphics domain. Many existing solutions today have their roots in
the PC domain, where multimedia functionality has grown very fast the past years. PC architectures and
solutions, however, are not always adequate for CE devices.

The interfaces proposed in this document fulfil to a large extend the requirements that were gathered by the
CELF Audio Video Graphics Working Group [1]. The main drivers for the choices that were made are:

- The CELF AVG API should support a range of products with the same API where there is a
functional overlap. This should now or in the future include all CE domains: Home (Set Top
Boxes, analog/digital TVs, digital TVs, Personal Video Recorders applications, Digital Media
Adapter products etc.), Mobile (smartphone, featurephone, portable media players, etc.), and
Automotive (car infotainment, navigation, etc.)

- The CELF AVG API should provide freedom in the implementation and abstract from different
implementations like HW or SW streaming, single or multiple processor solutions, single or multi
chip solutions and HW accelerated or pure SW media processing implementations. This allows for
different implementations on different targets (e.g. CE products or standard PCs).
This requirement translates to a preference for a functional, user-space interface over ioctl based
device driver interfaces, in order to allow for pure software, hardware, and hardware accelerated
implementations.

- The CELF AVG API must support scalability and be able to deal with a large diversity in products
(e.g. from a TV product to a STB product etc).

- The CELF AVG API is required to enable the different companies using the API to concentrate on
the added value of their business (e.g. a platform implementation on a chip set, or a middleware
implementation, or a product integration). For this reason it is important to handle interfaces as
independent assets from implementations of the CELF AVG API.

- The CELF AVG API should be well documented, have a consistent and single “look & feel” with
consistent syntax, style, documentation, semantics, behaviour, and should have no internal
overlap.

- Requirements will be changing over time, implying changes to interfaces. This must be
manageable on the interface specifications.

- The CELF AVG API should be an open interface, available without any restrictions or implied
costs to all parties that want to make of use it, and it should be possible by any party to implement
the CELF AVG API without any restrictions or implied costs other than the actual implementation
costs.

- Last, but not least, the CELF AVG API should fit with the Linux operating system and the
existing solutions which are part of the current AVG spec 1.0 i.e. DirectFB for graphics. It should
allow for an efficient implementation on a Linux based system, leveraging available open source
implementations.

Based on these requirements the specification for audio, video and graphics are defined in the next
sections of this document. The main solutions the specification is based on are:

- Universal Home API (UHAPI)
This standard has been defined by the industry consortium called UHAPI Forum and is proposed
for ISO/IEC standardization via the MPEG organization [2,3]. The standard will be referred to as
ISO/IEC 23004: M3W (Multimedia Middleware). An open source implementation of a growing
number of UHAPI interfaces is called UHAPI4Linux [4]. Whenever UHAPI interfaces are

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 6

mentioned in this document, the UHAPI specification 1.1 or better is meant.
An introduction to UHAPI can be found in [8,9], details are in [10].

- DirectFB,
DirectFB was already part of the CELF AVG 1.0 specification, and has been implemented by
many CE/silicon vendors [5].

- OpenGL ES
OpenGL ES is the de-facto standard for 3D graphics in the mobile domain [6].

- Framebuffer
The framebuffer device is the de-facto low-level standard for many CE devices.

- ALSA.
ALSA is the audio solution part of the Linux kernel [7]. Though it is tailored to the PC+soundcard
architecture and does not cover all CE domain requirements, it is a widely adopted solution that
can be used and complemented if needed for CE devices requiring more features.

1.1 References
[1] : Consolidated requirements document at
http://tree.celinuxforum.org/CelfPriWiki/AudioVideoGraphicsSpec2

deeplink:
http://tree.celinuxforum.org/CelfPriWiki/AudioVideoGraphicsSpec2?action=AttachFile&do=get&target=C
ELF_AVG_requirements_v1.1.pdf

[2] The official site of the UHAPI specifications, at www.uhapi.org

[3] UHAPI specification version 1.1 version, donated by the UHAPI Forum to CELF (complying with
CELF non-member submission license requirements), at
http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI

[4] UHAPI4Linux open source implementation of UHAPI interfaces:
http://sourceforge.net/projects/uhapi4linux/

[5] The DirectFB specification at www.directfb.org

[6] The OpenGL ES specification at http://www.khronos.org/opengles/spec/

[7] ALSA specification at http://www.alsa-project.org or directly http://alsa.opensrc.org/

[8] UHAPI Technical white paper: http://www.uhapi.org/technology/white_papers/uhapitechpaper-v4.1.pdf

[9] UHAPI overview presentation:
http://www.uhapi.org/home/news/UHAPI_Architecture_IFA_20050905.pdf

[10] UHAPI Readers Guide: uhAPISpecificationReadersGuide.pdf, part of the full UHAPI specification
package from http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI and
http://www.uhapi.org/technology/specification/spec_download/

http://tree.celinuxforum.org/CelfPriWiki/AudioVideoGraphicsSpec2
http://tree.celinuxforum.org/CelfPriWiki/AudioVideoGraphicsSpec2?action=AttachFile&do=get&target=CELF_AVG_requirements_v1.1.pdf
http://www.uhapi.org/
http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI
http://sourceforge.net/projects/uhapi4linux/
http://www.directfb.org/
http://www.khronos.org/opengles/spec/
http://alsa.opensrc.org/
http://www.uhapi.org/technology/white_papers/uhapitechpaper-v4.1.pdf
http://www.uhapi.org/home/news/UHAPI_Architecture_IFA_20050905.pdf
http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI
http://www.uhapi.org/technology/specification/spec_download/

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 7

2. Terminology
2.1 Acronyms and terms
Term Definition

ALSA
Advanced Linux Sound Architecture -- functional level audio API, now standard in 2.6
Linux kernels, replacing OSS.

API Application Programmers Interface

ATSC
Advanced Television Systems Committee. American standard body for digital television
broadcasting.

CE
Consumer Electronics: a class of devices used in the home or on the move. Includes DVD,
DVR, PVR, PDA, TV, set-top box, cellular phones, etc.

CVBS
The analog Composite Video, Blanking Signal: a format for an analog television signal
before it is modulated onto an RF carrier.

DLNA
Digital Living Network Alliance, DLNA aligns industry leaders in the CE, mobile, and PC
industries through digital interoperability.

DVB Digital Video Broadcast: European standards body for digital television broadcasting.

FB,Framebuffer
Abstraction of video-out hardware with a low level (ioctl) API. Standard in >2.4 Linux
kernel (see the /usr/src/linux/Documentation/fb kernel tree directory for more information).

HDMI

High-Definition Multimedia Interface, uncompressed, all-digital audio/video interface.
HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital
audio on a single cable.

ISDB
Integrated Services Digital Broadcasting, Japan standard body for digital television
broadcasting.

MPEG-1/2/4
Moving Picture Experts Group: a compression standard for digital audio & video with
varying levels of complexity and achievable compression ratios.

NTSC
National Television Systems Committee: American standard for analog television
broadcasting.

PAL Phase Alternating Line standard for analog television broadcasting.

PVR Personal Video Recorder: a consumer electronic device.

SECAM
Système Electronique Couleur Avec Mémoire: French standard for analog television
broadcasting.

SCART
The Scart (Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs)
connector is used for combined audio and video connections.

SPDIF

Sony/Philips Digital Interface, a standard audio file transfer format. Developed jointly by
the Sony and Phillips corporations, S/PDIF allows the transfer of digital audio signals from
one device to another without having to be converted first to an analog.

SPTS Single Program Transport Stream, see TS

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 8

STC System Time Clock, reference clock for obtaining synchronization of audio/video streams

TS
Transport Stream: one or more digital streams (usually, MPEG-2 files) multiplexed into a
single stream. A Transport Stream consists of fixed length packets.

VBI

Vertical Blanking Interval. The part of a TV signal that is sent between each video frame.
This non-viewable part of the signal is used to transmit data like teletext and closed-
caption content

V4L

Video for Linux: low level (ioctl) video input and overlay API, standard in the 2.4 Linux
Kernel. Originally designed for control of analog video capture and tuner cards, as well as
parallel port and USB video cameras.

V4L2
Video for Linux, second version, made to be more flexible and extensible. Added
specifications for digital tuner control and capture.

Y/C

Colorspace representation commonly used in digital video broadcasts, and video
compression technologies such as MPEG. It uses three orthogonal components, one for
luminance (Y) and two for the color-difference signals (Cr,Cb).

YUV
Colorspace representation commonly used in European TV broadcast. It is similar but not
the same as Y/C

2.2 Compliance classifiers
Terminology conventions are adopted here as they are defined in IETF RFC 2119, "Key words for use in
RFCs to Indicate Requirement Levels" (by S. Bradner, March 1997). A compliance classifier from the
following set may be used:

• [M]ust, Required, Shall: This is the minimum set of requirements. The CELF based products are
expected to comply with these requirements when expressed in unconditional form. A conditional
requirement expressed in the form, "If X, then Y must be implemented", means that the
requirement "Y" must be met when the conditional aspect "X" applies to a given implementation.

• [S]hould, Recommended: Recommended items are optional items that are strongly recommended
for inclusion in CELF based products. The difference between "recommended" items and
"optional" items, below, is one of priority. When considering features for inclusion in a product,
recommended items should be included first.

• [O]ptional, May: Optional items are suggestions for features that will enhance the user experience
or are offered as a less preferred choice relative to another recommended feature. If optional
features are included, they should comply with the requirement to ensure interoperability with
other implementations.

• E[X]pressly Forbidden: This term means that an item must not be incorporated in a CELF based
product.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 9

3. Specification
3.1 Audio
3.1.1 Rationale
When considering the processes required for an audio subsystem in the CE context, it becomes interesting
to make an inventory of the set of functionalities available in most popular Linux APIs that relate to audio:
among others, the audio processing functionality available in ALSA (and OSS) has been evaluated and
compared to what UHAPI can provide.

Analysis has turned out (see references) that, in the CE context, ALSA-API as well as ALSA-libs are
offering a relatively small subset of the functionality that are provided in the UHAPI framework, (as
depicted in Figure 1: Relation of UHAPI and ALSA in the context of a simple Analog Broadcast Decoding
use case.).

To summarize:

- The UHAPI specifications are covering Analog and Digital Broadcast decoding functionality
(including the ATSC standard, see Table 3-1), and the widest range of typical audio post-
processing and rendering facilities used in CE devices, see Table 3-1and Table 3-2, respectively;

- The ALSA-API and ALSA-libs offer mostly functionality related to digitizing, synthesizing,
writing/reading files, offered are also a couple of basic audio features, such as volume, balance,
mixing, and tone control, and a wide range of MIDI interfaces; it is to be noted that the ALSA
tools package allows decoding of AC-3 stream.

- Compared to other Linux APIs providing also some audio functionality (a.o LinuxDVB,
Video4Linux 2), UHAPI has the widest coverage for all standards and for audio processing
algorithms (besides the usual volume, mute, mixing, balance and tone control that one can find in
other Linux APIs).

Other important reasons for choosing UHAPI as a solution for the audio related functionality in a system
are, a.o:

- The concepts behind UHAPI make it possible to extend the range of applications covered by the
UHAPI solution: new components can be defined and implemented to cover applications such as
"portable audio", where one could define a generic audio file encoder and a generic file decoder.

- It supports a wide range of product families due to the scalability being designed into the API.

- It is well documented.

- It provides a mature, wide and proven set of interfaces for controlling the audio part of a platform.

- It provides an implementation independent API, this allows one to choose different
implementations on different platforms for controlling dedicated solutions for audio in embedded
devices.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 10

ALSA Device
Driver ...

Dedicated Device
Driver

UHAPI

ALSA-API
Dedicated Device

Driver

CE domain

PC (soundcard) domain

MW

…

Dedicated Device
Driver

ALSA Device
Driver ...

ALSA Device
Driver ...

ALSA-lib

Analog
Audio

Decoder

Audio
Program
Selection

Output
Configuration

Dedicated Device
Driver

Application

Audio
Program
Selection

Output
Configuration

Speaker

SPDIF-OutLi
nu

x
O

S

Figure 1: Relation of UHAPI and ALSA in the context of a simple Analog Broadcast Decoding use
case.

3.1.2 Specification
[S] For controlling broadcast audio decoding functions, the audio interfaces specified by the UHAPI Forum
should be used. This includes the interface specifications as listed in Table 3-1. See Table 3-3 in the notes
section for a description of the individual specifications.

Note that only those specifications that are relevant for the product are being used and implemented in that
product. So for example, if a compliant product has no SPDIF inputs, then the uhISpdifIn specification is
not used.

Analog Audio Decoding SPDIF-in

ATSC Decoder SPDIF-out

SPDIF Decoding

Table 3-1: Broadcast audio decoding specifications.

[S] For controlling audio processing and rendering functions, the audio interfaces specified by the UHAPI
Forum should be used. This includes the interface specifications as listed in Table 3-2. See Table 3-4 in the
notes section for a description of the individual specifications.

Audio Automatic Volume Levelling Audio Program Selection

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 11

Audio Bass Enhancement Audio Volume Control

Audio Dynamic Range Control Equalizing

Audio Mixing Output Configuration

Audio Noise Generation Speaker Set/Headphones

Table 3-2: Audio processing and rendering specifications.

[S] For controlling PC (sound cards) domain functionality (synthesizing, MIDI interfaces), the ALSA
functional level interfaces should be used.

[O] For other domains, requirements and solutions have not been analysed in depth for this version of the
CELF specification. Existing ALSA and UHAPI interfaces may be used.

[O] Implementations of the UHAPI audio interfaces for non-PC domain functionality may internally use
ALSA or OSS or other – dedicated - implementations..

3.1.3 Notes
In this section, the individual specifications with their name and a brief description of the addressed
functionality in the specification are listed.

Specification Name Description

uhIAnaAdec Analog Audio Decoding Decodes an encoded analog audio input stream, and
outputs the decoded programs. Determines the sound
standard of the incoming stream from a set of allowed
sound standards and provides notifications of various
changes that occur in the input stream.

uhIAtscDec ATSC Decoder This component is responsible for demultiplexing and
decoding an ATSC compliant Transport Stream (TS)
into its constituent components.

uhISpdifDec SPDIF Decoding Decodes an originally SPDIF-formatted encoded audio
input stream, and outputs a decoded audio stream.
Determines the compression standard of the encoded
audio incoming stream and provides notifications of
various changes that occur in the input stream.

uhISpdifIn SPDIF-in Parses the data from a digital input signal that complies
to the SPDIF format. The parsed meta data is available
to the client. Both meta data and the audio data (linear
PCM or encoded audio) are available at the output.

uhISpdifOut SPDIF-out Transforms various formats of a digital audio stream to a
SPDIF IEC compliant stream.

Table 3-3: Description of the broadcast audio decoding specifications.

In Figure 2 an example graph is shown based on the interface specifications listed for decoding a digital
and an analog input signal.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 12

uhISpidfIn uhISpdifDec

uhITuning uhIAnaAvDem uhIAnaAdec

uhIAnaVdec
Video

Audio

Analog

Digital

Audio
…

…

Figure 2: Simplified example Audio decoding graph.

Specification Name Description

uhIAavl Audio Automatic
Volume Levelling

Compensates for the variation in the volume level, that
are e.g. caused by a change in the audio content
(advertisements) or a change in the source of the
incoming audio signal, resulting in less annoyance for
the end-user.

uhIAbassEnh Audio Bass
Enhancement

Provides control on a set of signal processing algorithms
that improve listening experience for low-frequency
(bass) sounds. An appropriate choice of the algorithm
depends on the kind of bass rendering capabilities the
system speakers have.

uhIAdrc Audio Dynamic Range
Control

Reduces the dynamic range of the audio incoming signal
to get low-level and high-level signals closer together in
level, the incoming signal can thus be adapted to the
reproduction apparatus and/or the listening conditions.

uhIAmix Audio Mixing Mixes a number of incoming (uncompressed, baseband)
audio streams into a single ouput audio stream;
individual control is provided to mute, unmute, and
control the gain of each of the incoming streams.

uhIAnoiseGen Audio Noise Generation Provides control on the injection of noise into audio
channels to be fed to a set of speakers (noise injected a
channel at a time), enabling the calibration of the inter-
channel relative reproduction levels at the listening
position.

uhIAprogSel Audio Program Selection Selects one (or more) audio program (e.g. a language)
from an audio incoming stream with multiple programs.

uhIAvolCtrl Audio Volume Control Provides control on the sound level of the audio signal
outputted by the audio playback system (master

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 13

volume); also provides control on muting of the audio
signal, and on Loudness processing.

uhIEqualizer Equalizing Provides control to adjust the signal level of the audio
incoming signal in various frequency bands.

uhIOutConf Output Configuration Provides control to a set of algorithms to get an audio
stream with a specific output configuration from an
audio incoming stream: selection among a set of
possible algorithms covering surround processing,
virtualizing, downmixing and upmixing processes and
selection of the number of channels in the output stream.

UhISpkr Speaker Set/Headphones Activates the speakers to be used in the system and
provides control to bass-redirection, trim control and
delay functionalities.

Table 3-4: Description of the audio Processing & Rendering.

In Figure 3 an example graph is shown based on the interface specifications listed in Table 3-4.

uhIOutputConfig uhIEqualizer … uhIAdrc uhIAprogSel uhISpeaker

Figure 3 Example Audio processing & Rendering graph.

3.1.4 References
This section lists references to other standards or to implementations.

Comparison of Linux Audio interfaces http://tree.celinuxforum.org/CelfPubWiki/AvgAudioAPIs

The official site of the UHAPI specifications: www.uhapi.org

UHAPI specification version 1.1 version,
donated by the UHAPI Forum to CELF

http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI

Open Source implementation of UHAPI: http://sourceforge.net/projects/uhapi4linux/

ALSA specification: http://www.alsa-project.org or directly
http://alsa.opensrc.org/

LinuxDVB specification: www.linuxtv.org or directly
http://www.linuxtv.org/downloads/linux-dvb-api-
1.0.0.pdf

Video4Linux 2 specification: http://v4l2spec.bytesex.org/spec/

http://www.uhapi.org/
http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI
http://sourceforge.net/projects/uhapi4linux/
http://www.alsa-project.org/
http://alsa.opensrc.org/
http://www.linuxtv.org/
http://www.linuxtv.org/downloads/linux-dvb-api-1.0.0.pdf
http://v4l2spec.bytesex.org/spec/

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 14

3.2 Video
3.2.1 Rationale
3.2.1.1 Analog and Digital Broadcast
The required control interfaces for the analog and digital broadcast video is to a large extent defined by the
broadcast standards (NTSC, PAL, SECAM, ATSC, DVB, ISDB). Compared to other Linux APIs, UHAPI
has the widest and most uniform coverage for all standards. Currently ISDB is not yet supported (by any
known API). Support for ISDB can be added by just adding one decoder component (e.g. uhIIsdbDec).

Other important reasons for choosing UHAPI as a solution are:

- It supports a wide range of product families due to the scalability being designed into the API.

- It is well documented.

- It provides a mature, wide and proven set of interfaces for controlling the video part of a platform.

- It provides an implementation independent API, this allows one to choose different
implementations on different platforms for controlling dedicated solutions for video in embedded
devices.

- UHAPI matches well with existing implementation in the Linux domain like e.g. LinuxDVB.
LinuxDVB could for example be used as an implementation as demonstrated by the open source
project: UHAPI4Linux.

3.2.1.2 PVR
Many solutions exist for basic, low-level timeshift / recording solutions. UHAPI provides a consistent
solution to support timeshift / recording functionality and the required controls to be DLNA compatible.
This and the fact that the UHAPI solution for PVR is consistent with the broadcast solution is the reason to
choose for UHAPI in the PVR domain.

3.2.1.3 Networked Media
At this point in time the Networked Media domain is not yet supported by this CELF AVG specification.
There are no good existing solutions known yet. This is to be added in a future extension of the CELF AVG
specification.

Within the UHAPI forum a new WG is started that is specifically addressing Networked Media also known
as the Digital Media Adapter domain. This should be considered as part of the future extension of the
CELF AVG specification.

3.2.1.4 Mixing Video & Graphics and controlling multiple planes
DirectFB and UHAPI provide complementary functionality, but have some overlap. The main focus of
DirectFB is Graphics, and the main focus of UHAPI is Audio and Video control. Both use very similar
interface technology (Vtable based interfaces, and explicit functional interfaces (not ioctl based). The
abstraction level of DirectFB and UHAPI is also very similar. Both provide primitive interfaces to abstract
the acceleration HW (different HW platforms), and focus on providing the middleware with a cross
platform control interface.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 15

Vmix

Vid Layer

Li
nu

x
O

S

G
fx

A
cc

el
er

at
io

n

Audio Video Hardware

Vid Layer
Gfx LayerGfx Layer

... LC

UHAPI

... LC

DirectFB implementation

+

Gfx Layer

DirectFB

CELF Application

•Non-linear scaling
•Render Subtitles
•Color key ranges
•Borders
•Fade to
•…

•Accelerated gfx
•Windowing
•Input devices
•Fonts
•…

Figure 4 DirectFB in relation with the uhIVmix interface specification

Both DirectFB and UHAPI provide mechanism to compose different layers (video and gfx) into one output
(e.g. by means of blending). This is exactly the area where DirectFB and UHAPI meet. The picture below
illustrates the combination of UHAPI and DirectFB. Given the richer functionality of UHAPI it has been
chosen to use UHAPI for the control of video planes and optional graphics planes for video related
functionality like subtitles. A number of planes can be assigned to DirectFB for used for all kinds of
graphics purposes.

An alternative solution for mixing video and graphics is to define multiple framebuffer devices (/dev/fb0,
dev/fb1, …) in combination with some specific ioctl’s for controlling the layering and composition. The
preference for functional style interfaces instead of ioctls and additional support for e.g. non-linear scaling
etc, has lead to the choice for the UHAPI/DirectFB solution.

3.2.2 Specification
[S] For controlling broadcast video decoding functions, the video decoding interfaces specified by the
UHAPI Forum should be used. This includes the following interface specifications as listed in Table 5. See
Table 8 in the notes section for a description of the individual specifications.

Note that only those specifications that are relevant for the product are being used and implemented in that
product. So for example, if a compliant product has ATSC decoding functionality in it, then this ATSC
decoding functionality is to be controlled by the middleware via the ATSC Decoder specification. In case
of an analog TV product, the ATSC Decoder specification is of course not relevant and is not used. In this
case the Analog Video Decoding specification is of course used.

Analog Audio & Video Demodulation RF Amplification

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 16

Analog Video Decoding Signal Strength

ATSC Decoder STC Decoder

Analog AV Input Transport Stream Demultiplexing

Analog AV Output Transport Stream Multiplexing

Channel Decoding Tuning

HdmiIn URL Source

Image Decoding 2 VBI Slicing

Out Of Band Tuning & Demodulation

Table 5 Broadcast decoding specifications.

[S] For controlling video processing and rendering functions, the video interfaces specified by the UHAPI
Forum should be used. This includes the following interface specifications as specified in Table 6. See
Table 9 in the notes section for a description of the individual specifications.

Ambient Level Histogram Modification

Analog Video Encoder Noise Measurement

Analog Video Encryption Scan Rate Conversion 2

Anti Aging Sharpness Enhancement

Black Bar Detection Sharpness Measurement

Video Color Enhancement Basic Video Featuring

Color Transient Improvement Video Mixing

Dynamic Noise Reduction

Table 6 Video Processing & Rendering.

[S] For controlling PVR video functions, the PVR interfaces specified by the UHAPI Forum should be
used. This includes the following interface specifications as specified in Table 7. See Table 10 in the notes
section for a description of the individual specifications.

Data Injecting SPTS Transmuxing

Data Extracting

Table 7 Personal Video Recording related.

Note that the interface specifications mentioned in Table 7 are added to support PVR functionality.
However, for a complete product typical broadcast interface specifications as mentioned in Table 5 and
Table 6 are also used.

[O] For other domains requirements and solutions have not been analysed in depth for this version of the
CELF specification. Existing UHAPI interfaces may be used.

[O] Implementations of the UHAPI interfaces may internally use existing V4L(2) or Linux DVB
implementations.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 17

3.2.3 Notes
In this section the individual specifications with their name and a brief description of the addressed
functionality in the specification are listed. Some examples are given to indicate the context of the different
specifications. For the actual individual specifications, please refer to the specifications on the UHAPI web
site where they can be downloaded (www.uhapi.org).

Specification Name Description

UhIAnaAvDem Analog Audio & Video
Demodulation

Demodulate the signal, and output the resulting
Y/CVBS video and encoded audio signal. Determines
the TV system of the incoming signal so the sound
carrier can be located.

UhIAnaVdec Analog Video Decoding Decode a composite video stream (e.g. CVBS, Y/C) into
a component decoded signal (e.g. YUV) or to decode a
component video stream into another type of component
video stream. It also notifies properties of the decoded
video signal.

UhIAtscDec ATSC Decoder This component is responsible for demultiplexing and
decoding an ATSC compliant Transport Stream (TS)
into its constituent components.

UhIAvIn Analog AV Input Detect base band signal properties associated with an
AV input cluster (e.g. a SCART) and notifies changes of
these properties.

UhIAvOut Analog AV Output Mute audio and video outputs and signal base band
signal properties associated with an AV input cluster
(e.g. a SCART).

UhIChanDec Channel Decoding Control digital demodulation for DVB cable (DvbC),
terrestrial (DvbT), and satellite (DvbS) reception.

UhIHdmiIn HdmiIn Extracts info frames from a HDMI stream and passes
them on to the client.

uhIImageDec2 Image Decoding 2 Decode full images to a requested format, get
thumbnails in a requested format, and extract raw meta-
data.

UhIOob Out Of Band Tuning &
Demodulation

Receive an external out of band signal, tune to the
correct frequency and demodulate that signal. This is
typically used by clients that adhere to the OpenCable
POD host control interface standard.

UhIRfAmp RF Amplification Control the amplification of an incoming RF signal in
order to optimize the signal processing by a tuner.
Typically needed in regions where transmissions are
weak, over modulated, or heavily distorted.

UhISigStrength Signal Strength represents functionality to measure the strength of an
incoming IF signal.

UhIStcDec STC Decoder Provide a constant time base for synchronized
presentation of components (audio, video, subtitles, etc.)

http://www.uhapi.org/

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 18

of a digital MPEG stream.

The STCD synthesizes the STC from time stamps that
have been extracted from an MPEG stream (in push
mode), or it bases the STC on an autonomously running
clock that is linked to, but not driven by, the PTS values
in the decoded video or audio elementary stream (in pull
mode).

UhITsDmx Transport Stream
Demultiplexing

TS Demux represents functionality to filter specific
content (e.g. PES packets, sections) from a transport
stream (TS).

UhITsMux Transport Stream
Multiplexing

Control the rate and number of insertions per section
into this transport stream and output this multiplexed
transport stream.

UhITuning Tuning Tune to a specific frequency (for e.g.. an antenna, cable
or satellite dish). It can perform many operations like
tuning, fine-tuning and optionally Automatic Frequency
Control (AFC) and searching on the input signal.

UhIUrlSrc URL Source A URL Source is a streaming source that streams data
identified by a URL into the platform (based on
protocols like e.g. http, ftp, rtsp, file etc.).

uhIVbiSlice VBI Slicing Extract Vertical Blanking Interval data from an analog
video stream.

Table 8 Description of the broadcast decoding specifications.

In Figure 5 an example graph is shown based on the interface specification listed for decoding a digital and
an analog input signal.

uhITuning uhIChanDec uhIAtscDec

uhITuning uhIAnaAvDem uhIAnaVdec

uhIAnaAdec

uhIVmix …

Audio

Audio

Video

Analog

Digital

Figure 5 Simplified example graph.

Specification Name Description

uhIAmbientLevel Ambient Level Set the measured ambient light. This can then be used by
the platform to optimise the video processing algorithms
based on this.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 19

UhIAnaVenc Analog Video Encoder The Analog Video Encoder gives control over the
encoding of a digital video stream into an analog video
signal.

uhIAnaVencrypt Analog Video
Encryption

The Analog Video Encryptor gives control over an anti-
taping feature.

uhIAntiAging Anti Aging Control the algorithm used to prevent aging in case of
static images being displayed (e.g. logo’s).

UhIBbarDet Black Bar Detection Detection of the position of the black bars in the video
signal. These are often present if the transmission uses a
different aspect ratio then the original recording.

UhIColEnh Video Color
Enhancement

Enhance the colors of the incoming video signal. Color
enhancement deals with the color features Skin Tone
Correction, Blue Stretch, and Green Enhancement.

UhICti Color Transient
Improvement

Allows control over the color transient improvement
functionality (to increase the perceived color sharpness).

UhIDnr Dynamic Noise
Reduction

To control the reduction of the noise in a video stream.

uhIHistoMod Histogram Modification Histogram Modification can be used to improve the
local contrast in a picture of which the distribution of
grey levels is sub-optimal.

uhINoiseMeas Noise Measurement The Noise Measurement offers an abstract view on the
amount of noise in a video signal.

uhIScanRateConv2 Scan Rate Conversion 2 Scan Rate Conversion provides the control on different
algorithms to change the scan rate and or scan type of a
signal (progressive, interlaced).

uhISharpEnh Sharpness Enhancement Sharpness Enhancement deals with enhancing the
sharpness of the luminance (Y) component of a YUV
signal.

uhISharpMeas Sharpness Measurement The Sharpness Measurement logical component has a
YUV signal as input. It measures the sharpness of the Y
signal (luma sharpness) and the sharpness of the UV
signal (color sharpness).

UhIVfeat Basic Video Featuring Basic Video Featuring represents functionality to control
the brightness, contrast, saturation, hue, and white point
of a video signal.

UhIVmix Video Mixing Video Mixer represents functionality to compose a
single video stream from multiple inputs, each of which
can either be video or graphics.

Table 9 Description of the video Processing & Rendering.

In Figure 6 an example graph is shown based on the interface specifications listed in Table 9.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 20

uhIVmix uhIColEnh

UhIScanRate
Conv2

UhIScanRate
Conv2

uhIDnr

uhIDnr

uhICti …

Gfx

Figure 6 Possible Video processing & Rendering graph.

Specification Name Description

uhIDataInject Data Injecting The Data Injecting component allows the injection of
streaming data into the platform. This can be used for a
PVR application.

uhIDataExtract Data Extracting The Data Extracting component allows the extraction of
streaming data from the platform. This can be used for a
PVR application.

uhISptsTrMux SPTS Transmuxing Provides functionality to transmux an incoming
Transport Stream to a SPTS, to insert sections in this
SPTS and to notify clients of the locations of video
frames in the SPTS output.

Table 10 Description of the personal Video Recording related.

SPTS Transmuxing

TsDmx TsMux
IFrame

Detector
TS SPTS

Middleware writes
SPTS to HDD

Data extracting LC

Extractor

Data extracting

Extractor

Figure 7 Extracting a Single Program Transport Stream for recording.

In Figure 7 a simplified context is given. Here the SPTS Transmux is used to reduce the bandwidth, by
selecting the specific stream to be recorded, of the incoming stream. After this bandwidth reduction, the
stream can be recorded to any device that is typically supported by Linux (e.g. a harddisk). Obviously in a
real product there will be a tuner and channel decoder etc. in front of the SPTS Transmux from Table 10.

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 21

Data injecting
LC

Injector
Data injecting

Injector
ATSC Decoder LC
(i lifi d)

TsDmx Video
decoder

Audio
decoder

ATSC Decoder (simplified)

TsDmx Video
decoder

Audio
decoder

SPTS

Middleware reads SPTS
from HDD and injects it

Decoded content

Video Mixer

Figure 8 Injecting a Single Program Transport Steam for playback.

In Figure 8 a simplified context is shown for the Data Injector to show how to play back a recorded stream.
The normal Atsc Decoder can be used to decode the recorded stream. The AtscDec provides the controls
for the trickplay functionality (e.g. control playback speed). Obviously in a real product more components
will be there like e.g. Video Processing and Rendering components (see Table 9).

ATSC
Decoder

Data
extracting

Data
injecting

SPTS
Transmux

Middleware either passes content directly
from extractor to inject (live viewing) or
it first stores it on HDD and later reads it
back and injects it (delayed viewing)

Video Mixer

Figure 9 Combining Data Extraction and Injection for delayed viewing.

In Figure 9 a simplified combined usage is shown from the SPTS Transmux, the Data Extractor and the
Data Injector interface specifications. In this case a watch delayed video use case is given. A real product
obviously contains more interface specification like e.g. a Tuner, Channel Decoder and Video Processing
and Rendering components (see Table 9).

3.2.4 References
This section lists references to other standards or to implementations.

The official site of the UHAPI specifications: www.uhapi.org

UHAPI specification version 1.1 version, donated
by the UHAPI Forum to CELF

http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI

Open Source implementation of UHAPI: http://sourceforge.net/projects/uhapi4linux/

LinuxDVB specification: www.linuxtv.org or directly
http://www.linuxtv.org/downloads/linux-dvb-api-
1.0.0.pdf

Video4Linux specification: http://www.linuxtv.org/v4lwiki

Video4Linux 2 specification: http://v4l2spec.bytesex.org/spec/

http://www.uhapi.org/
http://tree.celinuxforum.org/pubwiki/moin.cgi/UHAPI
http://sourceforge.net/projects/uhapi4linux/
http://www.linuxtv.org/
http://www.linuxtv.org/downloads/linux-dvb-api-1.0.0.pdf
http://www.linuxtv.org/v4lwiki
http://v4l2spec.bytesex.org/spec/

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 22

3.3 Graphics
3.3.1 Rationale
Given the widespread use of both DirectFB (especially in the TV domain), and standard FrameBuffer (in
the PDA/Mobile domain), both are recommended. When graphics is combined with video, however, the
DirectFB + UHAPI solution described above is preferred. The focus of DirectFB is on rendering and
acceleration of 2D Gfx.

The focus of the UHAPI Video Mixing specification is on the composition of the Gfx and the video, and on
scaling the video.

Given this focus difference it is specified that DirectFB is only controlling the graphics layers, and the
video layers are to be controlled by the uhIVmix specification as depicted in Figure 4 in the previous
section. IDirectFBScreen does not provide enough control on e.g. the scanrate and scantype conversion
(use uhIScanRateConv2 instead to control the scan rate conversion, use uhIVfeat instead to control the
brightness, white point etc.).
The capability on IDirectFBScreen to select output connectors does not support enough, and making
connections or setting up graphs is more complex and HW specific. It must also be possible to setup the
entire streaming graphs in one atomic action to avoid artefacts, uhIConnMgr is to be used for this.

OpenGL ES is the de-facto industry standard in the mobile domain and seems to be equally well applicable
in the home domain for accelerating 3D graphics. The focus of OpenGL ES is on rendering and
acceleration of 3D Gfx.

DirectFB, OpenGL and UHAPI combinations have been proven, and implementations exist. OpenGL ES is
a subset of OpenGL.

The interfaces for Window Management and the Graphical User Interface are outside the CELF AVG
specification. Known window managers can be used on top of DirectFB (e.g. X based solutions or Gtk+
which is implemented on top of DirectFB
(http://www.directfb.org/index.php?path=Development%2FProjects%2FGTK%2B)).

3.3.2 Specification
[S] The standard Framebuffer is recommended for use in CE devices.
[S] DirectFB is recommended for use in CE devices.

[S] When graphics is combined with video, DirectFB in combination with UHAPI should be used. In this
combination the video layers are controlled via the uhIVmix specification. The uhIVmix specification can
expose one or more of the graphics layers to DirectFB for control via DirectFB.

[S] For control of 3D graphics OpenGL ES should be used.

Obviously, if the CELF 2.0 compliant product does not support or need 3D Gfx, the OpenGL ES part is not
relevant for that specific product instance.

Note that not all of the available interfaces from DirectFB are part of this specification. When DirectFB is
used, the following interfaces must [M] be used1:

• IDirectFB Main interface

• IDirectFBSurface Core graphics functionality

• IDirectFBFont Font loading, metrics and measurements

1 Note that IDirectFBEventBuffer and IDirectFBInputDevice are not mentioned here since they are not
related to Graphics.

http://www.directfb.org/index.php?path=Development%2FProjects%2FGTK%2B

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 23

• IDirectFBDisplayLayer Managing size, format, scaling, blending of layers
Note that the IDirectFBDisplayLayer interface only operates on the
layers that are controlled by DirectFB, not the video layers controlled
by the uhIVmix specification.

• IDirectFBWindow Multiple apps on one (graphics) layer

• IDirectFBPalette Modify palette of surfaces with indexed format

[O] The following interfaces are optional for the layers controlled by DirectFB. This supports the cases
where a dedicated decoder is not yet properly defined or where the middleware/application decodes the
video itself (SW), and wants to render this to a IDirectFBSurface:

• IDirectFBImageProvider Getting information about and loading one image from file.

• IDirectFBVideoProvider Rendering video data by a software decoder in the middleware into a
surface.

• IDirectFBDataBuffer Streaming or static data for image or video providers.

[X] The following interface must not be used:

• IDirectFBScreen Display encoder, output connectors.
Note that EnumScreens on the IDirectFB interface will not list any
available screens since the IDirectFBScreen interface is not supported.

[M] There are other restrictions to the use of DirectFB in the CELF API context:

• IDirectFBDisplayLayer

o GetScreen does not return an interface since the IDirectFBScreen interface is not
supported. It just returns DFB_UNSUPPORTED

o GetSourceDescriptions must only return one source ID and name.

o GetCurrentOutputField is not supported. This is not useful and incomplete. It just returns
DFB_UNSUPPORTED

o TestConfiguration, SetConfiguration is not supported for a Video Layer. It just returns
DFB_UNSUPPORTED

o SetFieldParity is not supported. It just returns DFB_UNSUPPORTED.

o GetColorAdjustment, SetColorAdjustment is not supported. The Layers capabilities will
reflect this. Use the uhIVfeat instead.

3.3.3 Notes
In Figure 10 in Section 3.3.4 the relation is shown between the different specification elements of the CELF
2.0 AVG API. In a next version of this CELF specification, the relation between DirectFB and an OpenGL
ES implementation is to be further detailed (currently DirectFB only provides the IDirectFBGL interface).

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 24

Vmix

Vid Layer

Li
nu

x
O

S

Audio Video Acceleration Hardware

Vid Layer
Gfx LayerGfx Layer

... LC

UHAPI

... LC

DirectFB implementation

+

Gfx Layer

DirectFB

OpenGL ES
implementation

Gfx
Acceleration

Hardware

OpenGL

CELF 2.0 Application

Figure 10 Relation of UHAPI, DirectFB and OpenGL ES interfaces.

3.3.4 References
This section lists references to other standards or to implementations.

The DirectFB specification: www.directfb.org

The OpenGL ES specification: http://www.khronos.org/opengles/spec/

The Graphics Tool Kit specification (or Gtk+): http://www.gtk.org/

http://www.directfb.org/
http://www.khronos.org/opengles/spec/
http://www.gtk.org/

CE Linux Forum Technical Document

Classification: AVG Specification v2

© 2006 CE Linux Forum. All rights reserved. 25

4. Work in progress
The following sections list ongoing and planned activities of the Audio Video Graphics working group.

4.1 Graphics
OpenGL and DirectFB combinations have been demonstrated in the PC domain. A number of member
companies are currently implementing the combination of OpenGL ES and DirectFB. Results will be
published on the CELF AVG Wiki pages.

4.2 Media Processing Frameworks
There are several interesting developments in the domain of media processing frameworks. The Khronos
group is finishing the OpenMax specification, and the open source Gstreamer solution is being used in a
number of CE devices or being investigated. A next version of the AVG specification will include a
specification for media processing framework. For now, we only mention a number of considerations.

Media Processing Frameworks can be used to implement audio and video system functionality by creating
graphs of audio/video processing components, codecs, sources and sinks. A media processing framework
facilitates connecting components and takes care of communicating and buffering of data between
components. The main function of media processing frameworks is this streaming functionality, also called
‘sidebar connections’. Codecs, source, sink and filter components have also functional control interfaces,
e.g. to set the volume level or brightness. Since the CELF AVG specification recommends specific
interfaces for this functional control in the previous sections, a media processing framework should match
with these interfaces. A framework should not define control interfaces itself, or it should define lower-
level interfaces on top of which the CELF interfaces can be realized.

	Intro
	Rationale
	References

	Terminology
	Acronyms and terms
	Compliance classifiers

	Specification
	Audio
	Video
	Graphics

	Work in progress
	 Graphics
	Media Processing Frameworks

