Lollipop MR1 Verified Boot

Andrew Boie
Open Source Technology Center
Intel Corporation

Agenda

* What is Verified Boot?

 Description of Verified Boot Components
* Q&A

What Is Verified Boot?

» Verified Boot establishes a chain of trust from the bootloader to the system image

« Components verified:
* Boot / Recovery images
« Each containing kernel w/command line, ramdisk, optional 2"d-stage bootloader
+ Signature block appended to the end of the boot image
» Verified by the bootloader using a keystore
OEM-signed keystore ships with device
User-supplied keystore may be enrolled via Fastboot if device is unlocked first
* System image (and also Vendor image if present)
* Protected by Linux dm-verity
+ Signing key stored in boot ramdisk
* Incremental updates re-implemented to work on a per-block level

« The end user is empowered to unlock the device and flash boot/system/recovery images
signed and verified with their own generated key

« Terminology used is sometimes inconsistent, “verified boot" or "verity" in the code can
variously apply to verification of boot images, system images, or both

* The integrity of the bootloader itself is out of scope

Boot Image Header

Signhed Boot Images

bzlmage

« Boot images created by mkbootimg in the Android build
+ system/core/mkbootimg

« Concatenates a header, bzimage, ramdisk, optional 2"d-stage
loader image into a single binary blob

* Small C program

* Header contains total size of boot image (without signature data),
sizes/offsets of sub-components

« New tool in the build system: boot_signer
» Code is in system/extras/verity/

* Run by the build system immediately after running mkbootimg
* Appends signature to the boot image
* Default key used is “verity” key under build/target/product/security .
* See sign_target_files_apks section for details on production re-signing Optlonal 2nd Stage

* Implemented in Java using BouncyCastle APIs Loader

- Boot images are written as raw data to dedicated partitions
* "boot” for main Android Boot Image
- “recovery” for OTA Recovery Console

- mkbootimg

Signature -boot_signer

Boot Signature Format

DER Encoded ASN.1 message data appended to the end of the boot
image

No way to tell from the boot image header whether the image is

signed or not

* In our loader, we read 4096 bytes of additional data beyond the size of
the boot image as reported by the header

» Extra data passed to OpenSSL ASN.1 decoding routines

+ Header changes likely due to backward compatibility before signing was
introduced -- has implications for incremental OTA updates

Signature is computed by hashing two components
* The boot image itself

+ The authenticatedAttributes ASN.1 data (in DER form) inside the
AndroidVerifiedBootSignature message

* target - Boot image type (either "boot” or "recovery”)
* length - Boot image size, should match the header

algorithmldentifier block indicates how to hash/verify images
* boot_signer currently only supports SHA1 or SHA256 with RSA Encryption

X509 Certificate used to sign the boot image included
* Included certificate for reference only

* In production, the public key in the certificate must be contained in the
keystore managed by the bootloader

AndroidVerifiedBootSignature DEFINITIONS ::=
BEGIN
formatVersion ::= INTEGER
certificate ::= Certificate
algorithmIdentifier ::= SEQUENCE ({
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL

}

authenticatedAttributes ::= SEQUENCE {
target CHARACTER STRING,
length INTEGER

}

signature ::= QCTET STRING

END

Keystores

A keystore is a signed collection of RSA
key objects, each with an associated
Algorithmldentifier

The FormatVersion and KeyBag fields
are collectively referred to as the
“inner keystore”

Inner Keystore data signed with an
AndroidVerifiedBootSignature

Given a full DER keystore message,
some adjustments must be made to the
enclosing SEQUENCE data to create a
valid Inner Keystore message

END

AndroidVerifiedBootKeystore DEFINITIONS ::=

BEGIN

FormatVersion ::= INTEGER

Inner Keystore
KeyBag ::= SEQUENCE ({
Key ::= SEQUENCE {
AlgorithmIdentifier ::= SEQUENCE ({
algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL

}

KeyMaterial ::= RSAPublicKey

}

Signature ::= AndroidVerifiedBootSignature

Keystores (Continued)

* Verified boot devices ship with an “OEM Keystore” which is built into the system and
sighed by a key managed by the OEM

* keystore_signer tool in system/extras/verity creates keystore binaries
* Implemented with Java BouncyCastle APIs

* On an unlocked device, the end user may enroll their own keystore binary via the
“fastboot flash keystore” command

» Typical scenario: user unlocks device, enrolls new keystore, flashes custom boot/recovery
images, sets bootloader to locked or verified state

* More detail on bootloader states later

* Upon boot, the loader checks if a user keystore is present and will attempt to verify
it using the OEM key if the loader isn’t unlocked

* If the keystore signature doesn’t verify, the user will be may be warned boot before
proceeding to use that keystore to verify images

* Regardless of whether the OEM keystore or the user-supplied keystore used, the
selected keystore is used to verify the boot or recovery images

Fastboot

 Despite its name, simple protocol for communicating with the
device over USB

* Implemented in the bootloader on the device
* Client:

 system/core/fastboot
* Allows issuing commands, flashing images

* Not really any facilities for getting data off the device other
than simple text strings

Bootloader Lock States

» Averified boot capable loader has 3 different security states
» Locked, Verified, Unlocked

« State transitions done via Fastboot commands

» Any state transition should erase all user data

» Defense against attackers with physical access to the device, so that they cannot flash a hacked boot image and
access userdata contents

. %.cljata artition zeroed out; on next boot, fs_mgr will see this and initiate reboot into Recovery to create a
ilesystem

 Any state transition should require the user to physically confirm with the device’s buttons that the
state transition is actually desired

» Defense against malware which could otherwise surreptitiously issue ADB and Fastboot commands to unlock the
device without user’s knowledge
» Setting device to “unlocked” state requires option change in Settings app Developer Options
» Not enabled by default, user with proximate access must get past the lock screen to change this
* More details later under Persistent Data Block slides

» Specific commands may vary across implementations
* In Kernelflinger: “fastboot oem {lock|unlock |verified}”

Bootloader States (Continued)

« “Locked” state
» Devices ship to the end user in this state
» No images may be flashed or erased with Fastboot
» Boot/Recovery images verified by the bootloader using enrolled keystore

« “Verified” state

» Asubset of targets/partitions may be flashed or erased with Fastboot
bootloader, boot, system, oem, vendor, recovery, cache, userdata

» Boot/Recovery images verified by the bootloader using enrolled keystore

» Good state for running user-built Android images or third-party images like Cyanogenmod
Device is still secure, may have to deal with a prompt at boot if keystore isn’t signed by OEM

* “Unlocked” state
» Device may not be unlocked if flag in Persistent Data Block is not set via Settings app
» All Fastboot commands available

» User keystore may be enrolled or erased
Erasing keystore causes loader to fall back to OEM Keystore for image verification
« “fastboot flash keystore <path to keystore binary>” or “fastboot erase keystore”
* Unlocked devices do not verify boot or recovery images

* User may be warned at boot that the device is unlocked and requires physical interaction to proceed

Bootloader Boot States

* Device's security level expressed as colors

* GREEN - Device is locked or verified, keystore verified by OEM key, selected
boot image verified by the keystore

- Device is locked or verified, keystore NOT verified by OEM key, but
selected boot image verified by the keystore

« ORANGE - Device is unlocked, boot image signature not checked

» RED - Device is locked or verified, boot image NOT able to be verified, boot
cannot continue

» Affects boot policy in Kernelflinger

* The end user is presented with a warnin% Ul and must acknowledge with a
button press for YELLOW or ORANGE state to continue to boot

« RED state cannot boot the device, only option is to halt or enter Fastboot
» Reported in Fastboot Ul and also Android property in Kernelflinger

Persistent Data Block (PDB)

Implemented as a small “persistent” partition in the fstab
* Raw data, does not contain a filesystem

* The very last byte in the partition stores whether unlocking is enabled
Must contain value 0x01 or unlocking is forbidden

Not all methods of doing a Master Clear are the same

» A Master Clear initiated by the Settings app will zero the persistent partition along with user data
Considered trusted as user would have to get past lock screen to do this

» Erasing userdata from Recovery Console or Fastboot in “verified” state does not allow this

Relevant code
« frameworks/base/services/core/java/com/android/server/PersistentDataBlockService.java
» packages/apps/Settings/src/com/android/settings/MasterClearConfirm.java
* packages/apps/Settings/src/com/android/settings/Utils.java

Devices with Google Mobile Services store additional user data in the PDB

» Untrusted resets will require Google account sign-in of an account that has been already used by the device,
before the device can be used again

» Discourages thieves
All bets are off if the device can be rooted

[root]
/ o \
[entry 0] [entry 1]

]
/o o o\ e

I I l-Ve rI [entry 0 0] . . . [entry 0 127] .« . . [entry 1 127]

/oo \ / \ / \

blk 0 ... blk 127 Dblk 16256 blk 16383 blk 32640 . . . blk 32767

e Linux kernel feature
e http://lwn.net/Articles/459420/
e https://code.google.com/p/cryptsetup/wiki/DMVerity
o https://www.kernel.org/doc/Documentation/device-mapper/verity.txt

* Only supported in Android for ext4 filesystems

» Enforces a specific binary state of the /system and /vendor partitions

« Uses a cryptographic hash tree
« Leaf Nodes: every 4K block in the partition has a SHA256 hash of all the data in it
 Intermediate Nodes: Contains hash of leaf nodes below it
« At the top there is a root hash node which represents the entire disk
« On-demand verification of hashes during disk access, verified up to the root node of the tree

* Root hash is signed with a certificate stored in the boot image ramdisk
« We trust this certificate since it is verified by the bootloader

« Done entirely in software, no hardware support needed

http://lwn.net/Articles/459420/
http://lwn.net/Articles/459420/
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://www.kernel.org/doc/Documentation/device-mapper/verity.txt
https://www.kernel.org/doc/Documentation/device-mapper/verity.txt

dm-verity (continued)

« Creation and signing of hashes handled by Android Build System
» Defaults to “verity” key in build/target/product/security
» See section on sign_target_files_apks for details on production re-signing
« Everything you need is provided by AOSP

 Implications
* If enabled, dm-verity enforced for user & userdebug builds
 Significant changes made to the OTA system to support incremental updates
* Now done at a block level instead of per-file basis
* Details about this in my other presentation
» System/Vendor partitions can never be changed or mounted read-write
« Simply mounting changes the superblock!

» Userdebug builds support “adb disable-verity” command to allow for system image
modification
« ‘adb sync’, etc

» Breaks incremental OTA updates from currently installed software, device must be re-flashed
or use full image update before they will work again

dm-verity Metadata & Hash Trees

Ext4 Superblock

* Metadata

Magic number (0xb001b001) (or 0x46464f56 if "adb disable-verity” run)
Version (0)

Verity Table signature

Verity Table length

Verity Table passed to DM_TABLE_LOAD ioctl()

Contains block device, block sizes, number of data blocks, root hash, salt, device and
offset of verity hash tree -- see kernel verity.txt for more information

Signature verified by fs_mgr before passing to the kernel using certificate in ramdisk

* Verity Hash Tree
e Contains all the leaf node and intermediate node hashes

. _llgsgld directly by dm-verity code in the kernel, location passed in via Verity
able

Ext4 Filesystem

* Relevant code

» build/tools/releasetools/build_image.py now handles overall creation of
dm-verity signed filesystem im_agesg Py Metadata (32K)

Composed of the filesystem itself + metadata blob + verity hash tree
» system/extras/verity/build_verity_metadata.py creates metadata blob Hash Tree

« system/ extras/verityél build_verity_tree.cpp creates verity hash tree and
computes root hash & salt

Production Re-signing Process

By default, all APKs, OTA packages, boot and filesystem images produced by the build
are signed with testing keys

 CTS test exists to check and fail if these test keys are in use
e build/target/product/security

« OTA updates and factory provisioning images are created using a Target Files Package
(TFP)

* ZIP file containing all elements of the build

* sign_target_files_apks tool re-signs everything in the TFP with production keys
supplied by the user

« Regenerate boot images
» Regenerate signed filesystem images
* Replace on-device keys in various locations
« dm-verity key located in root ramdisk
* Bootloader OEM keystore out of scope of this mechanism

Bootloader Implementation Considerations

Need to implement confirmation UX with physical key input for various scenarios

Improperly signed boot or recovery images
Improperly signed User keystore
Device in unlocked state

« Confirm changing device state between locked, unlocked, verified

Need crypto code which can parse DER ASN.1 messages, DER X.509 certs, SHA256 hashing, RSA
verification

Don't write your own crypto code
For EFI Kernelflinger we used EFI-built OpenSSL library from UEFI Shim Project

Need nonvolatile place to store Fastboot state information

Ideally store Fastboot lock state, user keystore in area not accessible to running OS
For EFI devices that can do Fastboot in Boot Services context, we use EFI variables with Boot Services access only

We relax some security policies in eng/userdebug loaders to make life less annoying for development

Persistent Data Block ignored, device always unlockable

» State transition UX skipped to assist with automation

Verity key used to verify boot images is the default AOSP verity key
All security turned off in Eng builds, loader always acts like it is unlocked with no UX
Some policies needs to be bypassed in a trusted way during initial device provisioning steps and also RMA process

Configuration Prerequisites for Verified Boot

« Write a bootloader!
* 01.org distributes Kernelflinger which implements Verified Boot for EFI devices

* Product Makefile:
« S(call inherit-product,build/target/product/verity.mk)
» Enables additional steps in build system to sign boot images, etc

« Set PRODUCT_SYSTEM_VERITY_PARTITION (and also . .
PRODUCT_VENDOR_VERITY_PARTITION if used) to the device nodes corresponding to
these partitions

* Needed by build_image.py tool

 PRODUCT_COPY_FILES += frameworks/native/data/etc/
android.software.verified_boot.xml:system/etc/permissions/
android.software.verified_boot.xml

+ Tells PackageManager that the system supports Verified Boot, which may be required for some
apps to be allowed on the device

« fstab
» Add “verify” to the options for the /system (and also /vendor if applicable) line(s)

Q&A?

