
Devicetree

 FDT Format

 Plumbers 2018
 Vancouver, Canada

 Frank Rowand, Sony November 14, 2018
 181114_0049

Metadata
Motivation:
 - size reduction of FDT and kernel data
 - remove metadata from tree name space

side-effects:
 - update of FDT format required
 - additional features possible, eg
 * phandle as property value, format in decompile
 * delete node
 * delete property
 * validation features

FDT Overlay Metadata
How should the metadata required by overlays be
encoded in the FDT?

Discussion was in progress on devicetree-compiler
list
 Subject: [RFC] devicetree: new FDT format version
 Message-ID: <b96829f9-2e8b-fdc5-5090-58591e2260cf@gmail.com>
 Date: Mon, 22 Jan 2018 00:09:18 -0800

Metadata - base FDT overhead

 Takeaway:

 prototyping showed that the size of
 base metadata to enable overlay apply
 can be reduced significantly

 (see size slides)

Header format compatibility
Older software can read newer FDT (ignoring
new fields)

Newer software can read older FDT (not
trying to touch / use new fields)

 I am suggesting a change that breaks
 compatibility

 We want this to be a RARE event - so do all
 changes that will cause a break in one shot

Breaking Compatibility Impacts
dtc compiler (and related tools)

libfdt

boot loader

kernels (Linux, BSD, Zephyr)

Header - can just extend
Or could take opportunity to make
more regular structure block

 header

 magic
v1 size
 structure offset
 strings offset strings block
 mem rsvmap offset
 version
 xxx
v2 xxx
v3 strings size mem rsvmap
v17 structure size

Structure - break compatibility
--- source --------- --- tokenized ---------------------- --- cells --------

/ { BN 0 1 0

 nx { BN “ny” 1 ‘ny’\0\0
 p1 = <1>; BP val_len name_offset value 3 4 off_p1 1
 p2 = <2 99>; BP val_len name_offset value value 3 8 off_p2 2 99

 ny { BN “ny” 1 ‘ny’\0\0
 p3 = <3>; BP val_len name_offset value 3 4 off_p3 3
 }; EN 2
 }; EN 2

 nzz { BN “nzz” 1 ‘nzz’\0
 p4 = <4 14 24>; BP val_len name_offset value value value 3 12 off_p4 4 14 24
 }; EN 2
}; EN 2
 EB 9

key:
BN = Begin Node = 1 EN = End Node = 2 BP = Begin Property = 3 EB = End Block = 9

sequence of 4-byte cells (3 spaces between entries for readability:

1 0 1 ‘ny’\0\0 3 4 off_p1 1 3 8 off_p2 2 99 1 ‘ny’\0\0 3 4 off_p3 3 2 2
1 ‘nzz’\0 3 12 off_p4 4 14 24 2 2 9

metadata in tree name space
__symbols__ {
 i2c1_pins = "/fragment@0/__overlay__/pinmux_i2c1_pins";
};

__fixups__ {
 am3353x_pinmux = "/fragment@0:target:0";
 i2c1 = "/fragment@1:target:0";
};

__local_fixups__ {
 fragment@1 {
 __overlay__ {
 pinctrl-0 = <0x0>;
 };
 };

__symbols__ replacement
__symbols__ {
 i2c1_pins = "/fragment@0/__overlay__/pinmux_i2c1_pins";
};

Each entry in the "ext_phandle_use" block is a tuple of:

 u32 phandle_value
 u32 symbol_offset

The phandle_value contains the value in this FDT of the phandle
property in the labeled node whose label name is described by
symbol_offset.

The symbol_offset contains the offset within the "dt_strings"
block that contains the name of the label corresponding to
the node that contains the phandle value.

__fixups__ replacement
__fixups__ {
 am3353x_pinmux = "/fragment@0:target:0";
 i2c1 = "/fragment@1:target:0";
};

Each entry in the ext_phandle_use block is a tuple of:

 u32 prop_value_offset
 u32 symbol_offset

The prop_value_offset contains the offset within the "dt_struct"
block of the location within a property value that contains a
phandle value.

The symbol_offset contains the offset within the "dt_strings"
block that contains the name of the label corresponding to
the node that contains the referenced phandle value, where the
phandle value refers to a node in a different FDT.

__local_fixups__ replacement

__local_fixups__ {
 fragment@1 {
 __overlay__ {
 pinctrl-0 = <0x0>;
 };
 };

Each entry in the ext_phandle_use block is a single field of:

 u32 prop_value_offset

proposed metadata format
advantages:
 - less space in FDT, memory
 - simpler overlay apply code

disadvantages
 - new format has offsets into structure block
 and strings block, so modifying structure block
 or strings block may require modifying the
 metadata blocks (eg, by bootloader)

dgibson’s improvement
Instead of adding new blocks, add new tags to the structure block

FDT_EXTERNAL_PHANDLE with a property offset and strings table offset
would replace a __fixups__ entry

FDT_INTERNAL_PHANDLE with just a property offset would replace a
__local_fixups__ entry.

 They don't need an explicit property reference, because
 they would just apply to the immediately preceding property.

That approach means we're back to local data, which can be shuffled
around pretty easily for inserts and deletes. You'd have to adjust
offsets in the fixups for one property when it was altered but not
any further away than that.

 How to get a copy of the slides
1) frank.rowand@sony.com

2) https://elinux.org/Device_Tree_presentations_papers_articles

