
Host Performance Booster (HPB):
Introduction and Current Mainline Support Status

Jaemyung Lee, Alim Akhtar, Samsung

 #lfelc

Agenda

• Technical Backgrounds

• Introduce HPB

• Deeper Implementation

• Performance Improvement

• Current Status

• Conclusion

Technical Backgrounds:
Brief Information about UFS

 #lfelc

What is UFS?

• Universal Flash Storage(UFS)
– Simple, high performance, mass storage device with a serial interface
– Provides Higher performance & Lower power consumption
– Widely used in commercial embedded products(e.g., smartphone)

• Linux UFS Subsystem
– Subsystem that supports UFS storage devices
– Implemented under the SCSI Subsystem

 #lfelc

Performance: eMMC vs UFS
• Performance Comparison with eMMC

Products Interface Sequential Read Sequential Write Random Read Rand Write

eMMC

eMMC 4.5 140MB/s 50MB/s 7,000 IOPS 2,000 IOPS

eMMC 5.0 250MB/s 90MB/s 7,000 IOPS 7,000 IOPS

eMMC 5.1 250MB/s 125MB/s 11,000 IOPS 13,000 IOPS

UFS

128GB eUFS 2.0 350MB/s 150MB/s 19,000 IOPS 14,000 IOPS

256GB eUFS 2.0 850MB/s 260MB/s 45,000 IOPS 40,000 IOPS

256GB UFS Card 530MB/s 170MB/s 40,000 IOPS 35,000 IOPS

512GB eUFS 2.1 860MB/s 255MB/s 42,000 IOPS 42,000 IOPS

1TB eUFS 2.1 1000MB/s 260MB/s 58,000 IOPS 50,000 IOPS

512GB eUFS 3.1 2100MB/s 410MB/s 63,000 IOPS 68,000 IOPS

* https://news.samsung.com/global/samsung-electronics-doubling-current-smartphone-storage-speed-as-it-begins-mass-production-of-first-512gb-eufs-3-0

https://news.samsung.com/global/samsung-electronics-doubling-current-smartphone-storage-speed-as-it-begins-mass-production-of-first-512gb-eufs-3-0

 #lfelc

Architectural Overview
• UFS Top Level Architecture

– UFS communication is a layered communication architecture
– Based of SCSI SAM architectural model [SAM]

* JESD220E UFS3.1, JEDEC

 #lfelc

Architectural Overview
• UFS System Model

* JESD220E UFS3.1, JEDEC

 #lfelc

UFS Subsystem

• UFS Subsystem Implementation
– UFS is implemented under SCSI layer
– UFS driver uses the SCSI command set

• Location of UFS Subsystem in Linux
– UFS directory: drivers/scsi/ufs/
– Core drivers: drivers/scsi/ufshcd.{ch}
– Platforms: drivers/scsi/ufshcd-pltfrm.{ch}
– Controller specifics: driver/scsi/ufs-*.{ch}

• e.g., ufs-exynos.{ch}

Block Layer

SCSI Layer

I/O Scheduler

UFS Driver

File-system

UFS Device

Kernel

 #lfelc

Transactions in UFS
• UFS Transport Protocol(UTP) Layer

– UTP uses a SCSI Architectural model(SAM)
– Client-Server or Request-Response model
– UFS transactions consist of packets called UFS Protocol Information Unit(UPIU)

Target
Device

Host
System

Device Service
Request

Device Service Response

Task Management Request

Task Management Response

SAM client-server model

 #lfelc

Transactions in UFS
• UFS Protocol Information Unit(UPIU)

– All UPIU consists of a single constant 12 bytes
header segment

– Transaction specific segment
– Possibly one or more extended header segments
– Zero or more data segments

* JESD220E UFS3.1, JEDEC

 #lfelc

Scope of Improvement: The Read Latency

• UFS is a Flash Memory Storage
– NAND Flash device uses Flash Translation Layer (FTL)
– To translate logical address of I/O request to flash memory physical address
– Logical 🡪 Physical (L2P) mapping entries are managed by FTL
– Device must read the mapping entry first to reach the actual data
– This mapping table is maintained in the NAND flash memory.

• The ‘Read Latency’
– Normally UFS devices are having SRAM to cache these entries
– Because of high cost of SRAM, it only save partial data of whole entries

 #lfelc

Scope of Improvement: The Read Latency

(1) (2)

t
tR(map) (3) (4) tR(data) (5)

READ requested READ completed

Host System

Storage Device

Host Controller Interface

CPU + Logic

NAND Flash memory

(1)

(2) (3) (4) (5)

(1) Fetch read command
(2) Request L2P entry
(3) Read L2P entry
(4) Request user data
(5) Transfer user data

• Read Latency of UFS Device

-> Flash memory access latency doubled
* when the mapping entries are not cached in SRAM

Introduce HPB:
What is the Host Performance Booster?

 #lfelc

What is HPB?

The Host Performance Booster is an Extension Feature of UFS Subsystem:
to Improve the overall performance through reducing the read latency

UFS
Universal
Flash
Storage

HPB
Host
Performance
Booster

+

* UNIVERSAL FLASH STORAGE (UFS) HOST PERFORMANCE BOOSTER (HPB) EXTENSION, VERSION 2.0, JEDEC
https://www.jedec.org/document_search?search_api_views_fulltext=jesd220-3

https://www.jedec.org/document_search?search_api_views_fulltext=jesd220-3

 #lfelc

Concept of HPB

• What exactly HPB does?
– HPB caches the L2P mapping entries in the Host memory
– The capacity of Host memory is BIG enough to save the mapping entries
– Accessing the Host memory is a lot faster than accessing NAND

8B * 33,554,432 blocks
= 256MB

Address information

Mapping entries

…

8B

UFS

logical block(4KB)

128GB / 4KB = 33,554,432 blocks

…

Address information

Address information

🡪 256MB needed for whole 128GB mapping entries
* Assuming the logical block size of UFS device is 4KB

 #lfelc

Concept of HPB

Host System

Host Memory

Storage Device

Host Controller Interface

CPU + Logic

NAND Flash memory

(0)

(1)

(2) (3) (4) (5)

(0) Read Cached L2P entry
(1) Fetch read command
(2) Request L2P entry
(3) Read L2P entry
(4) Request user data
(5) Transfer user data

(0) (1) (2)

t
tR(data) (5)

READ requested READ completed

* When the mapping entries are not cached in SRAM

🡪 Read latency reduced

(1) (2)

t
tR(map) (3) (4) tR(data) (5)

READ requested READ completed

• Read Latency of UFS Device with HPB

 #lfelc

Overall Behavior

• Caching Requested

HPB Host
driver

UFS
Device

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0

1

… …

Host memory HPB data structure
(Host driver)

UFS booting

HPB host driver
initialization

Response

File
system

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 invalid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Any SCSI cmd
Command

 #lfelc

Overall Behavior

• Caching Mapping Entries

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0

1

… …

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 invalid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

File
system

 #lfelc

Overall Behavior

• Caching Mapping Entries

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0 0x13472915

1

… …

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 invalid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Mapping entries

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

File
system

 #lfelc

Overall Behavior

• Caching Mapping Entries

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0 0x13472915

1 0x91741312

… …

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 valid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Loops to get
every entries
in region Mapping entries

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

File
system

Now, HPB host driver can use HPB Read CMD
using HPB data structure

 #lfelc

Overall Behavior

• Sending Command

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0 0x13472915

1 0x91741312

- -

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 valid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Request Read

Loops

Mapping entries

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

Lookup HPB Entry
Table

File
system

 #lfelc

Overall Behavior

• Sending Command

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0 0x13472915

1 0x91741312

- -

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 valid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Request Read

Loops

Mapping entries

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

Lookup HPB Entry
Table

File
system

HPB READ
(LBA #101)
with PPN

(PPN #91741312)

 #lfelc

Overall Behavior

• Sending Command

System Area
(Available to OS)

HPB Region 0

HPB Region 1

HPB Entry Table
(LBA #0~)

Index PPN

0 0x12347134

1 0x73915734

… …

HPB Entry Table
(LBA #100~)

Index PPN

0 0x13472915

1 0x91741312

- -

Host memory HPB data structure
(Host driver)

HPB Region Lookup
Table

HPB
Region #

State

0 valid

1 valid

2 invalid

… …

Each HPB Region consists of PPNs for contiguous
LBAs so that host can lookup PPN for the
requesting LBA from the host memory

Request Read

Loops

Mapping entries

Request mapping entries

HPB Host
driver

UFS
Device

UFS booting

HPB host driver
initialization

Response

Any SCSI cmd
Command

Lookup HPB Entry
Table

HPB READ
(LBA #101)
with PPN

(PPN #91741312)

Request HPB Read
LBA : #101

PPN : 91741312

Deeper Implementation:
For further understanding

 #lfelc

UFSHCD

Data Structure

UFSHPB

ufs_hba
mmio_base
…
ufshpb_dev_info
… ufshpb_map_ctx

**m_page
*ppn_dirty

victim_select_info
lh_lru_rgn
max_lru_active_cnt
active_cnt

ufshpb_lu
lun

Cache Management

ufshpb_dev_info

num_lu
rgn_size
srgn_size
… ufshpb_subregion

*mctx
srgn_state
rgn_idx
srgn_idx
list_act_rgn
ufshpb_subregion

ufshpb_subregion

*sdev_ufs_lu
rgn_state_lock
*rgn_tbl
hpb_state
rsp_list_lock
lh_act_srgn
lh_inact_rgn
…
map_work
lru_info
…

ufshpb_region

*hpb
srgn_tbl
rgn_idx
rgn_idx
list_inact_rgn
list_lru_rgn
rgn_flags
ufshpb_region

ufshpb_region

* Some of data structures of HPB is not included in the picture

described in driver/scsi/ufs/ufshcd.h

described in driver/scsi/ufs/ufshpb.h

 #lfelc

State change of HPB

HPB_INIT

HPB_RE
SET

HPB_PRES
ENT

HPB_FAI
LED

HPB_RGN_I
NACTIVE

HPB_RGN_P
INNED

HPB_SRGN_U
NUSED

HPB_SRGN_I
NVALID

HPB_SRGN_V
ALID

HPB_SRGN_I
SSUED

ufshpb_region

*srgn_tbl
rgn_state
list_lru_rgn
…

ufshpb_lu
*rgn_tbl

ufshpb_subregion

mctx
srgn_state

ufshpb_map_ctx
**m_page
*ppn_dirty

HPB_RGN_A
CTIVE

HPB_SUSP
END

• READ -> HPB_READ:
– HPB_PRESENT & HPB_RGN_ACTIVE/PINNED & HPB_SRGN_CLEAN
– The cached entry is not DIRTY

hpb_state
…

 #lfelc

Region Management
• Activate/Inactivate Information

– Active/Inactivate region is informed
by device through the region number

– Information is received at each end of
transaction through Response UPIU

UFS
Device

Host
System

CMD UPIU

DATA IN/OUT UPIU

Response UPIU
(+HPB Information)

* JESD220-3A, JEDEC

 #lfelc

Region Management

Block Layer

SCSI Layer

I/O Scheduler

UFS Driver

File-system

UFS Device

I/O

Subregion Activation Informed

0 1 2 3 4 … RB*

HPB Entries

I/O
Read on Region (2)

HPB Read

timeline

Read on Region (2)

HPB Read WB**

4 – 32 KB

36 KB -

• Activate Region
– Active subregion is informed by Device

* RB: READ BUFFER command: used in HPB for requesting mapping entry
** WB: WRITE BUFFER command: used in HPB as prefetching command

Active list

 #lfelc

Region Management

Max Active region : 2048

0 1 2 2044 2045 2046

UFS Device

2047

Active LRU list : 2048

Region Activation Informed

0 1 2 2044 2045 2046 2047

0 1 2 2044 2045 2046 2047

Active LRU list : 2047

Active LRU list : 2048

• Inactivate Region – Victimized by LRU
– Active regions are managed by LRU algorithm(Active LRU list)

• If the list is full, the last used region has to be selected as victim
• Then, selected victim will be inactivated
• Total number of active region is not changed

 #lfelc

Region Management

Max Active region : 2048

0 1 2 2044 2045 2046

UFS Device

Active LRU list : 2048

Region Inactivation Informed

0 1 2 2044 2045 2046

0 1 2 2044 2045 2046 2047

Active LRU list : 2047

Active LRU list : 2047

2047

• Inactivate Region – Informed by Device
– Also, device can inform the region which should be inactivated

• HPB finds the region which is informed in Active LRU list
• Informed region is deleted directly from list and inactivated
• Total number of active region is reduced

Performance Improvement:
Is it work?

 #lfelc

Benchmark & UX experience

CYCLE UFS [S] HPB [S] DIFF [S]
1 272.4 264.9 7.5
2 250.4 248.2 2.2
3 226.2 215.6 10.6
4 230.6 214.8 15.8
5 232.0 218.1 13.9
6 231.9 212.6 19.3

UFS HPB Benchmark (RR) UFS HPB UX (App Launch Time)

* Measured with UFS 3.1 samples manufactured by Samsung

 #lfelc

Chunk-Range Result

Range(GB)

Range(GB)

[MB/s]

[MB/s]

[MB/s]

[MB/s][MB/s]

Range(GB)

Range(GB)Range(GB)

8KB: Up to 60% improvement 16KB: Up to 45% improvement

32KB: Up to 35% improvement 64KB: Up to 25% improvement 128KB: Up to 20% improvement

[MB/s]

Range(GB)

4KB: Up to 60% improvement

* Measured with UFS 3.1 samples manufactured by Samsung
** Measured through IOzone test: https://www.iozone.org/

https://www.iozone.org/

Current Status:
What is going on?

 #lfelc

HPB Linux Upstream Status

• Upstream Started in Q2 of 2020
– v40 of HPB 2.0 support (Daejun Park, Samsung)
– Host Control Mode for HPB (Avri Altman, WDC)
– Committed to SCSI tree in July 2021!

• Credits and Contribution: Thanks!
– Avri Altman (WDC)
– Bart Van Assche (acm)
– Bean Huo (Micron)
– Can Guo (Qualcomm)
– Greg Kroah-Hartman (Linux Foundation)
– Stanly Chu (Mediatek)

 #lfelc

Timeline

Jul Aug Sep Oct Nov DecMar Apr May Jun Jul Aug SepJan Feb Mar Apr May Jun

2020 2021

• 18th:

• 5th:

Micron posted the HPB v1.0 on Mainline

WDC posted the Host Control Mode for HPB v2.0

• 8th: Samsung posted
the HPB v2.0 on AOSP

• 2nd: HPB merged to AOSP

• 12th: PATCH v40 Committed
Samsung posted
the RFC patch for HPB
v1.0

• 27th:

• 5th: Samsung posted the HPB v2.0

 #lfelc

Conclusion

• HPB is still changing:
– PATCH v40 is committed at 2021-07-12
– Lots of suggestions are included since last year

• Contribute!
– Review it, Test it, Share the bug fixes, Please!

