
A Scalable, Cloud-Based 

Device Reprogramming 

Architecture 



About Me 
James Simister 
Director of Consulting Services 

•Panasonic Research & Development 

Company of America, Salt Lake City Lab 

– Software Developer for 30+ years 

– 20 years experience with Linux 

– 15 years working with embedded systems 

– Interests: Networking, Security, Cloud, … 

 



1. Google definition, emphasis added 

Introduction 
What Is a Device? 

•A thing made or adapted for a particular 

purpose, especially a piece of mechanical 

or electronic equipment.1 

 

•Any piece of electronic equipment capable 

of executing code to perform some 

function. 



Introduction 
Is There a Problem? 

•Abundance 

– Breadth: More kinds of devices available 

– Depth: More demand for each kind 

•Device lifetime of 10+ (20+) years 

 



Introduction 
Is There a Problem? 

•Time-to-market 

– Increasingly demanding 

– Dropped/incomplete features & enhancements 

•Crowd-funded projects, small start-ups 

– Lack of experienced engineers 

– Lack of security experts 



Introduction 
What Is Device Reprogramming? 

•Changing software (firmware) of a device 

– Updates 

– Enhancements 

– Add [or remove] features 

– Bug fixes 

• Application errors, security vulnerabilities, etc. 



Introduction 
Device Reprogramming: Challenges 

•Current cost vs. future capabilities 

•CPU capability/speed 

•Memory & storage (disk/flash) capacity 

•Connectivity & accessibility 

•Bandwidth 



Update Strategy 
Manual or Automatic? 

Manual Updates 

•User in full control 

•Inform user 

•Motivate user 

•Unknown timing 

 

Automatic Updates 

•Mfr. in full control 

•Mandatory 

•Scheduled 

•Controlled 



General Requirements 
Fundamental Issues 

•Security 

– How do you prevent attack (or loss of control)? 

•Reliability 

– How do you account for failure? 

•Scalability 

– How do you handle millions of updates? 



Security 
How Do You Prevent Attack? 
Trusted Sources 

•Where did the update originate? 

•Should the user/device trust the source? 

•Would source tampering be evident? 

 

•Hashes, Digital Signatures 

•Proof-Carrying Code 

•Verification/Validation 



Security 
How Do You Prevent Attack? 
Trusted Targets 

•Where did the update go? 

•Is the target authorized to accept update? 

•Are the assets protected? 

 

•Authentication 

•Authorization 

•Confidentiality 



Security 
How Do You Prevent Attack? 
Trusted Channels 

•Who has access to the infrastructure? 

•Would in-transit tampering be evident? 

•Can the installation be verified? 

 

•End-to-end key distribution & encryption 

•Non-repudiation 



Reliability 
How Do You Account for Failure? 

•Failure is not an option 

 

•Failure is reality 



Reliability 
How Do You Account for Failure? 
Gracefully Adapt 

•Storage issues 

•Adjust size, bandwidth 

•Retry, with back-off 

•Verification 

•Validation 



Reliability 
How Do You Account for Failure? 
Roll Back 

•Keep the previous image, revert 

•Update again, to previous image 

•Update the updater 

– Try again 



Scalability 
How Do You Handle Millions of Updates? 
Convenience 

•Enhancements 

•Minor bug fixes 

 

•Deploy slowly, at your convenience 

•Low server capacity & bandwidth 



Scalability 
How Do You Handle Millions of Updates? 
Urgency 

•Security vulnerabilities 

•Major bugs 

 

•Deploy quickly 

•High server capacity & bandwidth 

 



Scalability 
How Do You Handle Millions of Updates? 
Shared, Cloud-Based Infrastructure 

•Scale up to meet demand 

•Scale down to reduce costs 

•Share costs of setup & maintenance 

•Pay for what you use 



Requirements→Implementation 
Defining a General Process for Scalable, 
Cloud-Based Device Reprogramming 

1. Publish the update image 

2. Determine population of eligible targets 

3. Determine scheduling constraints 

4. Reprogram each eligible target 

5. Report progress 

 



Requirements→Implementation 
Reprogramming Each Eligible Target 

A. Obtain authorization for update 

B. Failsafe transition to Reprogram mode 

– Failure reverts to Normal mode, no change 

C. Transfer new image and update 

D. Failsafe transition to Normal mode 

– Failure reverts to Reprogram mode, retry 



Requirements→Implementation 
Two Images: Normal, Reprogram 

•Reprogram image significantly smaller 

– Custom Linux kernel and/or initrd 

– Reduce dependencies & features 

– Objectives: 

• Obtain updated image 

• Roll back 



Requirements→Implementation 
Bootloader, Hardware Support 

•Atomic switching of boot image 

•Atomic acceptance of booted image 

– Failure reverts to last accepted boot image 

•Power failure detection, protection 

– Guarantee atomicity, quality of writes 



The Update Process 
1. Publish the Update Image 

•OpenDOF provider 

– Image owner retains full ownership, control 

– Complete security model 

• Image owner (Trusted Source) 

• Device (Trusted Target) 

• Sessions (Trusted Channel) 

 

 



The Update Process 
2. Determine Population of Eligible Targets 

•Version Service using OpenDOF libraries 

– Devices report type and software version 

– Authorized clients may query database 

• Devices of specific type 

• Devices running specific software version 

• Devices not running specific software version 



The Update Process 
3. Determine Scheduling Constraints 

•Population size 

•Time constraints 

•Cost constraints 

 

•Determine required scale 



The Update Process 
4A. Obtain Authorization 

•Update Service using OpenDOF libraries 

– Notifies device of time frame to update 

– May include additional authorizations by 

• Manufacturer 

• Service provider 

• User 

• Device 



The Update Process 
4B. Failsafe Transition to Reprogram mode 

•Atomically switch to Reprogram mode 

•Reboot 

•Reconnect 

•Update Service accepts booted image 

– Verification of connectivity 



The Update Process 
4C. Transfer Image and Update 

•OpenDOF requestor to image provider 

– Transfer image blocks 

– Leverage UDP 

• Reduce buffering 

• Block caching 

– Verify image, signatures, etc. 



The Update Process 
4D. Failsafe Transition to Normal mode 

•Atomically switch to Normal mode 

•Reboot 

•Reconnect 

•Update Service verifies new version 

•Update Service accepts booted image 

– Verification of connectivity 



The Update Process 
5. Create a Report 

•Update Service tracks progress of devices 

•Generate report 

– Scheduled 

– Started 

– Succeeded 

– Failed 



Summary 
A Scalable, Cloud-Based Device 
Reprogramming Architecture 

•General, robust update process 

•Services to automate process 

– Image 

– Version 

– Update 

•Flexible OpenDOF libraries & protocols 

 



 
Questions & Answers 

 
https://opendof.org/ 

 


