
Will it Boot?
Standards for embedded Linux
Grant Likely, Arm

#lfelc @glikely



2 © 2021 Arm2

Exactly what problem are you trying to solve?
• Typically, embedded Linux is vertically integrated

• Firmware, OS, and apps bound together in a single build
• Every platform has slightly different behaviour

• Scale Problems
• Distro must be customized to boot (change Devicetree, vendor kernel tree, special configuration)
• Platform owner must maintain everything – problem for security updates
• Distros cannot handle per-platform customization

• Ecosystem Problems
• Extra engineering cost to get suitable OS booted – problem for ODM/OEM market
• Embedded using different tools from other parts of Linux ecosystem

Standards are designed to reduce engineering effort, while increasing the flexibility of 
products



3 © 2021 Arm3

Tension between standardization and flexibility

Enabling InnovationLow Flexibility High Software 
Maintenance Cost

Fixed Custom



4 © 2021 Arm4

Major changes to embedded Linux aren’t realistic
• Embedded Linux has well established, mature technology and tools

• Projects: U-Boot, TF-A, OPTEE
• Meta-distros: Yocto, OpenWRT
• Devicetree

• Rearchitecting from ground up is not an option
• Need migration path
• Cannot be disruptive
• Minimal engineering effort

• To be relevant, standards must work with existing tools and techniques



5 © 2021 Arm5

Distros need consistency
• Embedded Linux doesn’t mean custom OS

• Distros can provide better support options

• Custom board enablement is not supported
• Generic image must boot
• Platform drivers must not cause conflicts
• Ideally use same technologies as non-embedded platforms

• Mainline first policy
• Need standards for:

• Boot order and control
• Pre-boot execution environment (e.g., for Shim, Grub, systemd-boot, etc)
• Platform description
• Firmware Update
• Verified boot



6 © 2021 Arm6

U-Boot

OPTEE (optional)

TF-A (optional)

Linux

Hardware

Applications

UEFI FW Update

FDT

UEFI Apps (optional)

UEFI Stub

Platform

OS



7 © 2021 Arm7

UEFI is specification, not implementation
• Multiple implementations
• Tianocore EDK2 is the reference open source implementation

• https://github.com/tianocore/edk2

• U-Boot also implements UEFI
• CONFIG_EFI_LOADER

https://github.com/tianocore/edk2


8 © 2021 Arm8

Very little in UEFI is required
• The subset of what OSes require is nicely contained
• EBBR project defines a UEFI subset suitable for embedded Linux

• Required features to support Linux Distros
• Implemented in U-Boot
• Works with embedded hardware
• Uses Devicetree

• Problematic runtime features are optional
• SetVariable()

– not easy to implement if OS owns the storage device
• SetTime()

– OS owns the RTC device
• UpdateCapsule()

– Again, OS owns flash device



9 © 2021 Arm9

UEFI defines the ABI
OS uses firmware services during early boot, before device drivers get loaded

• Boot Services Table
• Events and Notifications
• Memory Management
• Image Loading
• Watchdog Timer
• ExitBootServices()

• Protocols (ABI extensions)
• Network
• Console
• Storage
• Graphics

BootServices
Callable before EBS()

• Runtime Services Table
• Variables
• Timers, Wakeup and RTC
• System Reset
• Firmware update

• Pointers to data about the 
system

• System Descriptions
• Devicetree
• SMBIOS
• ACPI

• UEFI details
• ESRT
• RuntimeServicesSupported

RuntimeServices
Callable before and after EBS()

SystemTable



10 © 2021 Arm10

UEFI defines the behaviour
• Boot device selection
• BootOrder and BootXXXX
• Removable device booting
• Handoff to OS



11 © 2021 Arm11

UEFI defines limited functions at runtime
• Set/Get RTC settings
• Set/Get Variables
• UpdateCapsule()



12 © 2021 Arm12

UEFI Secure Boot
• Authentication scheme for delegating authority
• Hierarchical key database

• Platform Key (PK) – Root of trust for UEFI
• Key Exchange Key (KEK) – signing authorities
• DB & DBX – key & hash databases, allow and revoke respectively



13 © 2021 Arm13

Firmware Update
• U-Boot implements UpdateCapsule() ABI and ESRT
• Device Firmware Update (DFU) backend
• UEFI Capsule as wrapper around FIT image

• Capsules can be managed by fwupd & LVFS
• tools/mkimage -f capsule.its capsule.itb
• tools/mkeficapsule capsule.itb capsule.bin

• CapsuleApp.efi for applying capsules
• Use either self-built SCT, or Arm SystemReady ACS image
• FS1:\> boot/efi/apps/capsuleapp.efi /path/to/capsule.bin



14 © 2021 Arm14

Devicetree tied to Linux kernel doesn’t scale
• Historically considered tied to the Linux kernel build
• Doesn’t work for the distros
• Isn’t great for Yocto either
• Firmware needs to provide copy of Devicetree by default

• Enables OS portability



15 © 2021 Arm15

Mainline Linux
• Distros have a mainline-first policy

• If board support isn’t in mainline, the distros will not support

• Mainline support helps Yocto too
• Less reliance on custom vendor trees
• Uprev kernel or apply security patches

• Requiring mainline solves many support problems



16 © 2021 Arm16

Testing
• UEFI Self Certification Test (SCT)

• UEFI ABI test utility
• https://github.com/tianocore/edk2-test
• https://gitlab.arm.com/systemready/edk2-test-manifest

• U-Boot UEFI Self Tests
• CONFIG_CMD_EFI_SELFTEST=y
• => bootefi selftest

• FWTS
• Arm’s SystemReady ACS-IR

• Prebuild disk images – work on SD and USB
• https://github.com/arm-software/arm-systemready
• Includes: SCT, Arm BSA & BBR tests, FWTS

https://github.com/tianocore/edk2-test
https://gitlab.arm.com/systemready/edk2-test-manifest
https://github.com/arm-software/arm-systemready


17 © 2021 Arm17

Formal Compliance Testing
• Arm launched SystemReady program in October 2020
• First certifications in June 2021
• Requirements

• Conform to EBBR
• Pass SystemReady ACS-IR test suite
• Boot 2 unmodified Linux distros
• Support UpdateCapsule()

• Using 3rd party testing labs
• More information

• https://developer.arm.com/systemready
• Contact email: systemready@arm.com



18 © 2021 Arm18

Work to be done
• Boot Device Selection (BDS) improvements

• BDS currently implemented as hush scripts
• Boot list or menu

• Console device selection
• console= kernel argument still needed too frequently
• Enabling framebuffer should not break console

• Measured Boot
• Devicetree validation and stability



19 © 2021 Arm19

Certification program is running now

See www.arm.com/systemready-certification-program for list of 
certified platforms and expect more announcements this year

Join us on the EBBR community project at 
https://github.com/arm-software/ebbr

Contact us about getting your platform certified
systemready@arm.com

http://www.arm.com/systemready-certification-program
mailto:systemready@arm.com

