
Ubuntu Touch Internals
Embedded Linux Conference 2014
Ricardo Salveti de Araujo <ricardo.salveti@canonical.com>
IRC: rsalveti

Ubuntu Engineering

Agenda

Canonical

● Background
● Challenges
● Building a new Unity
● Reusing Android drivers

○ LibHybris
● Overall architecture
● Deep dive:

○ Telephony and Connectivity
○ Multimedia
○ Camera

● Future development
● Get involved!

Ubuntu Touch Background

Canonical

● Mark Shuttleworth announced that
Ubuntu would support Phones and
Tablets in the end of 2011
○ Ubuntu was well supported on

X86 and ARM already
○ Previous experience with Ubuntu

Mobile / Netbook
○ Proposing a completely new UI

design (under the Unity concept)
○ Requirement to be easily

supported by a wide range of
devices

Ubuntu Touch Background: Challenges

Canonical

● Desktop Unity using Compiz + Nux
○ Complex design
○ Lacking proper support for OpenGL ES 2.0

● Quite a few components were not optimized for mobile (battery,
background processes, usability, etc)

● Hardware accelerated stack without depending on the hw vendor
● Decision to develop a new stack, and make it generic enough so it could

later be also shared with Desktop (convergence)

Canonical

New Unity: one that would rule them all

Canonical

● Traditional stack composed of Compiz, Nux, Unity and X11
○ Not ideal for mobile, not properly compatible with OpenGL ES 2.0
○ Nux not so developer friendly

■ And not commonly known by developers
○ X11 was also not ideal, but a replacement was already on the way

■ Wayland and/or MIR

● Experience with Ubuntu Netbook (EFL) and later Unity 2D (Qt)
○ EFL fast and small, but API not that stable and issues with lack of

development tools and documentation
○ Qt already supported and used by different targets and products

■ Great development tools and documentation
■ QML

Unity8: Built with Qt and QML

Canonical

● Decision to create a new Unity from scratch, using Qt 5.0
○ Qt was already quite well supported and known by developers
○ QML proved to be an easy and straightforward language/tool
○ Fully compatible with OpenGL ES 2.0
○ Different APIs and abstractions for many core components
○ Great Software Development Kit
○ Convergence in mind

● Only issue was finding hardware with decent drivers

Reusing Android Drivers

Canonical

● Android based devices largely available:
○ Decent drivers, but mostly closed source
○ Open Source code base, allowing us to read

and modify it as needed
● Issues:

○ Highly connected with the Kernel version
used by Android (along with the usual tons
of vendor-specific modifications)

○ Android is built with Bionic instead of Glibc,
types not necessarily compatible

○ Android core API/ABI is not necessarily
stable, need to stick with a specific version
(e.g. 4.4.2)

System Libraries and
Runtime

Android HAL

Linux Kernel

Applications and
Application
Framework

Reusing Android Drivers: LibHybris

Canonical

● Compatibility layer for systems based on Glibc that allows Bionic based
binaries to be used

● Created by Carsten Munk on August 2012
● Conceptually libhybris is a custom version of the Bionic linker, with hooks

replacing Bionic symbols with Glibc compatible ones
● Main differences and issues with libhybris:

○ Android uses fixed TLS slots that can override glibc's TLS
○ Bionic pthreads implementation differs from glibc

Executable

Linker

libhybris-common.so

Android based
Linker

LibHybris
hooks table

Glibc based symbol

Bionic based symbol

Binary Blobs

Load Android libraries
and map symbols

LibHybris

Canonical

hybris/common/jb/linker.c:

static int reloc_library(soinfo *si, Elf_Rel *rel, unsigned count)
{
 Elf_Sym *symtab = si->symtab;
 const char *strtab = si->strtab;
 (...)

 for (idx = 0; idx < count; ++idx) {
 (...)
 if (sym != 0) {
 sym_name = (char *)(strtab + symtab[sym].st_name);
 INFO("HYBRIS: '%s' checking hooks for sym '%s'\n", si->name,
 sym_name);
 sym_addr = get_hooked_symbol(sym_name);
 if (sym_addr != NULL) {
 INFO("HYBRIS: '%s' hooked symbol %s to %x\n", si->name,
 sym_name, sym_addr);
 } else {
 s = _do_lookup(si, sym_name, &base);
 }
 (...)
}

LibHybris

Canonical

hybris/common/hooks.c:

static struct _hook hooks[] = {
 {"property_get", property_get },
 {"property_set", property_set },
 {"printf", printf },
 {"malloc", my_malloc },
 (...)
}

void *get_hooked_symbol(char *sym)
{
 struct _hook *ptr = &hooks[0];
 static int counter = -1;

 while (ptr->name != NULL) {
 if (strcmp(sym, ptr->name) == 0) {
 return ptr->func;
 }
 ptr++;
 }
 (...)
}

Abstracting the Android Drivers

Canonical

● Android system image isolated in a LXC container
○ Minimal image with only drivers and core system services

● LibHybris used to access and use the drivers

● API is specific to Android, not integrated with the desktop stack
○ Issue when thinking about convergence
○ When possible, create an Android abstraction for common

components, such as:
■ Sensors
■ Multimedia (encode and decode)
■ Camera
■ Telephony

Architectural diagram of the overall system

Canonical

● Platform API
○ Sensors
○ GPS
○ Multimedia

● Mir
○ Display Server
○ Abstraction for the OpenGL ES 2.0 drivers
○ Hardware Composer

● QtUbuntu
○ Qt Platform Abstraction plugin
○ Based on Platform API

OMX

Linux Kernel

Camera

RILd H
yb

ri
s

C
o

m
p

at

Android HAL Mir Display Server

Ubuntu Applications

GPS

Sensors

oFono

Media
Unity8

Unity-Mir
App Manager

QtUbuntu

Platform API

Li
b

H
yb

ri
s

Android (LXC Container)Ubuntu 14.04

Pulse

Canonical

Canonical

Telephony

● Hard to convince vendors to publish enough
documentation to build an Open Source driver

● Android proposes an abstraction by providing a
HAL and a specific protocol (Radio Layer
Interface) for solicited and unsolicited
commands

● Each vendor provides a binary blob that talks
the RIL protocol

● RIL is separated in two layers:
○ Base layer that talks with the binary

modem
○ Upper layer that talks to the base layer

using the RIL protocol, over a socket

Android Telephony
Service (JAVA)

Vendor RIL
(shared library)

RIL Daemon

Applications

Socket

Android

Telephony and Connectivity: Ubuntu Touch

Canonical

● oFono as the main telephony service
○ In order to reuse the Android modem drivers, a new oFono specific

modem was created that talks with the RIL daemon
○ Communication via Socket, LibHybris not involved

● Network Manager as the default connectivity manager
○ No support to talk with oFono (oFono was only compatible with

ConnMan)
○ New plugin created that talks to oFono and helps setting the data

connection

● BlueZ 4.x (no issues here)

● Telepathy (and telepathy-ofono) used as the main communication
framework

Android

Canonical

oFono

Network Manager

BlueZ 4.x

Telepathy

Telephony and Connectivity: Ubuntu Touch

RIL Daemon

Vendor RIL
rild modem

Socket

D-Bus

D-Bus

D-Bus

Multimedia

Canonical

● GStreamer commonly used as the default multimedia framework on the
Desktop
○ Used by QtWebkit, QtMultimedia and others
○ Supports a wide range of plugins
○ Abstraction for the Android multimedia stack, but only covering the

JNI layer (android.media.MediaCodec)

● Android JNI (and Java) not used by Ubuntu Touch
○ New abstraction on top of stagefright and libmedia was created
○ Using LibHybris
○ Texture streaming

Canonical

$ gst-inspect-1.0 androidmedia
Plugin Details:
 Name androidmedia
 Description Android Media Hybris plugin
 Filename /usr/lib/arm-linux-gnueabihf/gstreamer-1.0
/libgstandroidmedia.so
 Version 1.2.4
 License LGPL
 Source module gst-plugins-bad
 Source release date 2014-04-18
 Binary package GStreamer Bad Plugins (Ubuntu)
 Origin URL https://launchpad.net/distros/ubuntu/+source/gst-
plugins-bad1.0

 amcviddec-omxqcomvideodecoderh263: OMX.qcom.video.decoder.h263
 amcviddec-omxqcomvideodecodermpeg4: OMX.qcom.video.decoder.mpeg4
 amcviddec-omxqcomvideodecodermpeg2: OMX.qcom.video.decoder.mpeg2
 amcviddec-omxqcomvideodecoderavc: OMX.qcom.video.decoder.avc

$ gst-launch-1.0 filesrc location=Sintel-1080p.mp4 ! qtdemux ! queue !
h264parse ! amcviddec-omxqcomvideodecoderavc ! filesink location=Sintel.raw

Canonical

Android

MediaCodec

Stagefright

Hardware Codec
(OMX)

GStreamer 1.0

Gst-Hybris
(androidmedia) LibHybris

QtMultimediaMediaScannerQtWebKit

PulseAudio

Alsa

Video

Audio

Multimedia

Camera: Android

Canonical

● Multiple HAL versions (1.0, 2.0, 3.0, 3.1)
○ ABI breakage
○ API differences
○ Hard to abstract

● Android Camera Service
○ Part of media service
○ Abstracts the Camera HAL in a simple API
○ Texture used for both output and preview
○ Not deeply connected to any other Android subsystem

Canonical

Android

Camera Compat

Camera Service

Camera Driver

LibHybrisQtMultimedia

Camera App

Camera Plugin
AAL

Camera: Ubuntu Touch

● Camera Service running inside the container
○ API abstracted by a compat library living on Android
○ LibHybris used to interact with the compat library
○ QtMultimedia plugin that talks with the compat library

Future Development

Canonical

● Telephony and Connectivity
○ MMS
○ Bluez 5

● Multimedia
○ Encode support
○ Upstreaming

● Camera
○ Video Recording

● And many more!

Canonical

● Freenode:
○ #ubuntu-touch

● Mailing List:
○ https://launchpad.net/~ubuntu-phone
○ Daily updates

● Virtual UDS

Get Involved!

https://launchpad.net/~ubuntu-phone
https://launchpad.net/~ubuntu-phone

Questions
Thank you

Ricardo Salveti de Araujo
ricardo.salveti@canonical.com

canonical.com
ubuntu.com

