LA
Board Farm APIs
for Automated Testing of

Embedded Linux — An Update

Harish Bansal Tim Bird

| Technical Engineer Principal Software Engineer
Timesys Sony Electronics

THE
[I LINUX
FOUNDATION

This talk presents an update on work to create a standard API between automated tests and
Board Farm hardware and software. Last year, we introduced the notion of a dual
REST/command-line API that could be used for discovery, control and operation of hardware
and network resources in a test lab. Since then, the scope of the work has increased, and
there are now APls for control of additional lab hardware.

Multiple implementations of the API (both server and client side) have been created. We will
describe the new APIs we have added, and demonstrate new tests that work with the REST
API system, including power measurement tests and hardware serial port tests. Also, we will
discuss how we envision using the API architecture for additional hardware testing, such as
CANbus, or A/V testing. Although different equipment is utilized in different test labs (or Board
Farms), by using the REST API the same test can be run in the different labs to obtain test
results and provide quality assurance for products.

It is hoped that this Board Farm API abstraction will pave the way for more sharing of
automated tests and testing resources, to accelerate the use of automated testing for
products based on embedded Linux.

www.timesys.com ©2021 Timesys Corp. &9 t imes y S

Review of REST API concepts

Status since last year
Resource model

Demos
Power measurement APIs and demo
Camera APIs and demo
Serial port APls and demo

Proof point
3 Test Frameworks (Lava, Fuego, Robot Framework) running on top
of APls

Future directions

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

There are many tests but no standardized way of running tests on physical
devices

There are many different Test Frameworks

There are a few Board Farm frameworks

But no standardized way to use different Test Frameworks or run tests
Every farm implements test infrastructure differently
Many labs use ad-hoc infrastructure

— Cobble together available hardware, and write custom scripts for control and data
collection

Tests written for one lab do not work in another lab
Nobody can share tests

Solution:

Creating a standard method to access a Board Farm allows:

Board Farm technologies can evolve separately from the interface to the farm
Tests can be written that work in more than one lab
Test Frameworks can work with more than one lab

www.timesys.com ©2021 Timesys Corp. 8 t imes y S

GPIO test, serial port test
Need to control two endpoints
— One on device under test (DUT) and one external endpoint
Audio, video playback test
Need to control two endpoints
— One on device under test (DUT) and a capture device
Power measurement (via external power monitor)
Need to control two endpoints:
— Application or workload profile on DUT
— Capture of power measurement data on external power monitor
USB connect/disconnect (robustness) testing
Need to control two endpoints:
— Application or monitor on DUT
— USB hardware external to board (drop/reconnect vbus)

www.timesys.com ©2021 Timesys Corp. S y S

Test Framework A Test Framework B Test Framework C

CLI APls APls
REST API
Board Board Board
Farm 1 Farm 2 Farm 3

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Test Framework A Test Framework B Test Framework C

CLlI APlIs APIs
REST API
GPIO
Power] — | endpoints
control Board in Power
lab \ measurement
Network Storage Audiolvideo
USB capture
endpoint

www.timesys.com ©2021 Timesys Corp. S y S

API proposal
2 parts
— web-based REST API
— Command line interface
REST API based on https and JSON
Extension to LAVA/Django REST API
Only requires curl and jq
Command line tool
Same operations as REST API
Suitable for automated use, as well as human interactive use

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

www.timesys.com ©2021 Timesys Corp. 89 t imes y S

More implementations
Added the resource model
new API: get-resource
Added the generic capture APl model
start-capture, stop-capture, get-data, delete
APls for new resource types:
power measurement
image and video capture
serial port receive and transmit
Direct support for APl in Fuego
Created test example in Robot Test Framework

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Extended original implementation
LAVA server is based on Django
Is in production use now, as part of Timesys Embedded Board Farm service
EBF client supports new APIs
— Is a shell-based client using curl and jq
— Git repo: https://github.com/TimesysGit/board-farm-rest-api
Created LabControl server and client implementation
Icserver is a plain CGl script (no framework)
Ic’ is a python client, using the python requests module
source is available now
— But should be considered alpha-level quality
— Git Repo: https://github.com/tbird20d/labcontrol.qit

www.timesys.com ©2021 Timesys Corp. S y S

https://github.com/TimesysGit/board-farm-rest-api
https://github.com/tbird20d/labcontrol.git

Found some incompatibilities between implementations
Goal:

Use both clients (ebf and Ic) with both servers (EBF and labcontrol)
Use of python requests module showed some issues with API
definitions

curl and requests perform same operations with different form encoding
— Have to make sure that wire protocol matches exactly

Both labs have APIs that the other lab does not support yet
EBF: APIs for storage management
labcontrol: serial receive/transmit

©2021 Timesys Corp. 888 t ime S y S

www.timesys.com

Previously, all operations were relative to the device under test
e.g.: api/v0.2/devices/{board}/power/on
Introduced new ‘resource’ model
To perform an operation:
— First, get the resource that is associated with the DUT, for this operation type
— Perform operations with a resource, instead of board:
= api/v0.2/resources/{resource}/camera/start-capture
Uses a new api to retrieve the resource assignment
api/v0.2/devices/{board}/get-resource/camera
resource=%(ebf rpi4 get-resource camera)

www.timesys.com ©2021 Timesys Corp. fa] t I m e S y S

Is more flexible
More than one resource of a particular type can be assigned to a board
— board-based APl assumes 1:1 mapping between lab resource and DUT
— e.g.: power-measurement at multiple probe points on the board
A resource can be associated with multiple boards
— e.g.: power control — it's very common for a single power controller to control
multiple boards
In the future:
Can support dynamic multiplexing

— Control the resource assignment at runtime
— Reserve the resource for the duration of usage

www.timesys.com ©2021 Timesys Corp. S y S

Test Framework A

Test Framework B

Test Framework C

CLI APls APls
REST API
USB
endpoint GPIO
Power T endpoints
control Audio/video
Storage Board in capture
lab 1
Network Audiol/video
capture
2
Power Power
measurement measurement
1 2

www.timesys.com

©2021 Timesys Corp.

sys

Currently supported resource types are:
Power-measurement
Camera
Serial
Ones that are envisioned:
Canbus
USB

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Generic ‘capture’ API consist of 4 verbs:
Start-capture
— Begin capturing data
— Returns a token for capture data manipulation
Stop-capture
— Stop capturing data
Get-data
— Retrieve the data from the server
Delete
— Remove the data from the server

www.timesys.com ©2021 Timesys Corp.

Btimesys

Power measurement

start-capture, stop-capture, get-data, delete
Image and video capture

capture still image

start-capture, start-capture with duration, stop-capture, get-ref — for videos
Serial port transmit

DUT as transmitter

lab resource as receiver

— set-config, start-capture, stop-capture, get-data, delete

Serial port receive

DUT as receiver

lab resource as transmitter

— set-config, put-data
www.timesys.com ©2021 Timesys Corp. 888 t imes y S

- REST APIs CLI Commands

Resource

Power
Measurement

Camera

Get Resource
/api/v0.2/devices/{DeviceName}/get-resource/{Resource-Type}/

Get Resource by feature
/api/v0.2/devices/{DeviceName}/get-resource/{Resource-Type}/{feature_n
ame}

Start Capture
/api/v0.2/resources/{ResourceName}/power-measurement/start-capture/
Stop Capture
/api/v0.2/resources/{ResourceName}/power-measurement/stop-capture/{t
oken}

Get Data
/api/v0.2/resources/{ResourceName}/power-measurement/get-data/{token
}

Delete Data
/api/v0.2/resources/{ResourceName}/power-measurement/delete/{token}

Capture Still Image
/api/v0.2/resources/{ResourceName}/camera/capture/

Start Capture
/api/v0.2/resources/{ResourceName}/camera/start-capture/
/api/v0.2/resources/{ResourceName}/camera/start-capture/{Duration}
Get Reference
/api/v0.2/resources/{ResourceName}/camera/get-ref/{token}/

Get Resource

$CLIENT {DeviceName} get-resource {ResourceType}

Get Resource by feature

$CLIENT {DeviceName} get-resource {ResourceType} {feature}

Start Capture

$CLIENT {ResourceName} power-measurement start

Stop Capture

$CLIENT {ResourceName} power-measurement stop {token}

Get Data

$CLIENT {ResourceName} power-measurement get-data {token}
Delete Data

$CLIENT {ResourceName} power-measurement delete {token}

Capture Still Image

$CLIENT {ResourceName} camera capture

$CLIENT {ResourceName} camera capture -o {Filename}

Start Capture

$CLIENT {ResourceName} camera start-capture

$CLIENT {ResourceName} camera start-capture -d {Duration}

Get Reference

$CLIENT {ResourceName} camera get-ref {Video-Id}

$CLIENT {ResourceName} camera get-ref {Video-Id} -o {Filename}

- REST APlIs CLI Commands

Start Capture Start Capture
/api/v0.2/resources/{ResourceName}/serial/start-capture/ $CLIENT {ResourceName} serial start
Stop Capture Stop Capture
/api/v0.2/resources/{ResourceName}/serial/stop-capture/{token} $CLIENT {ResourceName} serial stop {token}
Get Data Get Data
/api/v0.2/resources/{ResourceName}/serial/get-data/{token} $CLIENT {ResourceName} serial get-data {token}
Delete Data Delete Data

Serial /api/v0.2/resources/{ResourceName}/serial/delete/{token} $CLIENT {ResourceName} serial delete {token}
Set Config Set Config
/api/v0.2/resources/{ResourceName}/serial/set-config/ echo "{\"baud_rate\": \"115200\"" | $CLIENT
POST - { "baud_rate": "115200" } as data for post {ResourceName} serial set-config
Put Data Put Data
/api/v0.2/resources/{ResourceName}/serial/put-data/{token} $CLIENT {ResourceName} serial put-data <raw_data

POST - raw data

www.timesys.com ©2021 Timesys Corp. 853 t imes y S

Last year, Fuego used the API via a wrapper (‘ttc’) that it already
supported

Now, a Fuego user can specify a transport of either ‘ebf’ or ‘Ic’ for a
board, and have tests performed using the API directly

This requires less configuration inside the Fuego docker container
No 'ttc' wrapper between Fuego and the board farm client

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Support for recursive directory copy
Can copy an entire directory to or from the DUT
Support for debugging commands
ebf supports ‘—debug’ argument, which generates a trace of the API request
and response
— Is very useful to see data structures on wire

Have added sample tests showing APl usage

www.timesys.com ©2021 Timesys Corp. Btimes ySs

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

MMMMMM

l (REST-API)

(REST-API)

b,d

Lab
Resource

ACME power
measurement
board

power
probe

www.timesys.com

DUT
(Raspberry Pi)

©2021 Timesys Corp.

Assumption:

Lab knows the binding of DUT

and power measurement device
Resource ACME is assigned to
the Raspberry Pi

Test Steps:

Get PM resource associated with
DUT

Start PM data capture

Run Workload

Stop capture, get data

Analyze and report results

Btimesys

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

https://docs.google.com/file/d/1ZWmH06kMV1OBFjP80wK1XKe46xU32kZX/preview

Excerpt from power-measurement-test.sh:

echo "Getting power measurement resource for board"
RESOURCE=$($CLIENT $BOARD get-resource power-measurement)

echo "Starting power measurement"
token=$($CLIENT SRESOURCE power-measurement start)
if ["$?" 1="0"]; then
error_out "Could not start power measurement with $CLIENT, with resource SRESOURCE"
fi

echo "Performing some workload (stress test)"
${CLIENT} ${BOARD} ssh run "${WORKLOAD_COMMAND}"

echo "Stopping power measurement"
$CLIENT $SRESOURCE power-measurement stop $token ||\
error_out "Could not stop power measurement with SCLIENT"

echo "Getting data"

POWER_DATA=$($CLIENT $RESOURCE power-measurement get-data $token) || \
error_out "Could not get power data with $CLIENT, using token $token"

echo $SPOWER_DATA

MAX_POWER_USED="echo "$POWER_DATA" | xargs -n 1]| tail -n+2| cut -d'," -f2,3 --output-delimiter=""| awk '{printf "%.3f\\n", $1*$2/1000000}'| sort -r| head -1
echo "MAX-POWER-USED=$MAX_POWER_USED"
echo "THRESHOLD-POWER=$THRESHOLD_POWER"
echo "Deleting the data on the server"
$CLIENT $RESOURCE power-measurement delete $token || \
echo "Warning: Could not delete data for token $token on server"

www.timesys.com ©2021 Timesys Corp. fa] t I m e S y S

Get Resource {TestClient} {DeviceName} get-resource power-measurement REOURE==G ey (P GRS e

power-measurement)
Start Capture {TestClient} {ResourceName} power-measurement start token=$(ebf SRESOURCE power-measurement start)
Stop Capture {TestClient} {ResourceName} power-measurement stop {token} ebf $RESOURCE power-measurement stop $token

{TestClient} {ResourceName} power-measurement get-data

Get Data ftoken}

ebf SRESOURCE power-measurement get-data $token

Delete Data {TestClient} {ResourceName} power-measurement delete {token} = ebf SRESOURCE power-measurement delete $token

www.timesys.com ©2021 Timesys Corp. 89 t imes y S

Success
{“result”: “success”, “data”: <Resource Id>}
Failure

{“result”: “fail’, message:<reason for failure>}

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/{ResourceType}/

Success
{“result”: “success”, “data”; <token>}
Failure

{“result”: “fail’, message:<reason for failure>}

Start Capture /api/v0.2/resources/{ResourceName}/power-measurement/start-capture/

Success
/api/v0.2/resources/{ResourceName}/power-measurement/stop-capture/{to {“result’: “success’}
Stop Capture .
ken} Failure
{“result’: “fail’, message:<reason for failure>}
Success
{“result”: “success”, “data”: <csv string with
Get Data /api/v0.2/resources/{ResourceName}/power-measurement/get-data/{token} = power measurement readings>}
Failure
{“result”: “fail’, message:<reason for failure>}
Success
X) It!!'. “, 93
Delete Data /api/v0.2/resources/{ResourceName}/power-measurement/delete/{token} l{:;ii?e success’y

{result”: “fail’, message:<reason for failure>}

www.timesys.com ©2021 Timesys Corp. Btimes ySs

- Lab Assumption:

(REST-API) .
l‘ Power Controller Lab knows the binding of DUT
a b, d and camera
(REST-API) Resource CAM1 is assigned to
the Raspberry Pi
Lab Resource Y Test Steps:
Camera (Ras;?bUeTrry Pi) :
(CAM1) Get Camera resource associated
with DUT

Start Video Recording for a
configured duration
Reboot DUT

Get Video recording

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

https://docs.google.com/file/d/1qnl4lG_iyiIcmC58FyOz9vbyumw_Edg7/preview

Excerpt from camera-test.sh:

RESOURCE=$(ebf $DUT get-resource camera)
if [$? -eq 0];then
echo "Start Capturing Video"
VIDEO_ID=$(ebf $RESOURCE camera start-capture -d $DURATION)
if [$? -eq O];then
echo "Rebooting the Board"
ebf $DUT power reboot
if [$? -eq O];then
sleep "$TIME"s
VIDEO_URL=$(ebf $RESOURCE camera get-ref $VIDEO_ID)
echo "VIDEO_URL=$VIDEO_URL"
else
echo "Couldn't reboot the board"
exit 1
fi
else
echo "Couldn't start video capturing”
exit 1
fi
else
echo "Couldn't get camera resource for video capturing”
exit 1
fi

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Get Resource {TestClient} {DeviceName} get-resource camera RESOURCE=$(ebf raspbian get-resource camera)
{TestClient} {ResourceName} camera capture ebf $RESOURCE camera capture

Capture {TestClient} {ResourceName} camera capture -0
{Filename} ebf $RESOURCE camera capture -o screenshot.jpeg

{TestClient} {ResourceName} camera start-capture VIDEO_ID=$(ebf SRESOURCE camera start-capture)

Start Capture {TestClient} {ResourceName} camera start-capture -d VIDEO_ID=$(ebf SRESOURCE camera start-capture -d
{Duration} $DURATION)

{TestClient} {ResourceName} camera get-ref {VIDEO_ID} ebf $RESOURCE camera get-ref $VIDEO_ID

{TestClient} {ResourceName} camera get-ref {VIDEO_ID}
-0 {Filename} ebf SRESOURCE camera get-ref $VIDEO_ID -o recording.mp4

Get
Reference

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Success

{“result’: “success”, “data”: <Resource Id>}
Failure

{“result”: “fail’, message:<reason for failure>}

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/{ResourceType}/

Success

{‘result”: “success”, “data”: <Image URL>}
Failure

{‘result’: “fail”, message:<reason for failure>}

Capture /api/v0.2/resources/{ResourceName}/camera/capture/

/api/v0.2/resources/{ResourceName}/camera/start-capture/ Slceess e
Start Capture /api/v0.2/resources/{ResourceName}/camera/start-capture/{Du ‘;gﬁigg SRl P el e S L)
ration} {“result”: “fail’, message:<reason for failure>}
Success
Get Reference /api/v0.2/resources/{ResourceName}/camera/get-ref/{token} l{:;iifg : "success’, "data’. <Video URL>}

{‘result”: “fail’, message:<reason for failure>}

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Test of Serial hardware

2,4,5
RS232
1. Use REST API to configure lab
T Recoures resource as Rx or Tx, and baud rate
4 - serial DUT 2. Use local commands to set DUT
Serial data serial RX or TX and baud rate

Initiate capture

Initiate serial data transfer

End capture, collect log

Compare transmission vs capture
data

S kW

www.timesys.com ©2021 Timesys Corp. fa] t I m e S y S

www.timesys.com ©2021 Timesys Corp. 89 t imes y S

£, |cbbb.default.Functiona!

x +

€ - C ® localhost:8090/fuego/view/lcbbb/job/icbbb.default.Functional. BF _serial_tx/

° s
* 00 @®» §

&4 Yahoo!Mail % GoogleMaps G Google Bm Accounts Bm Testing B Tim ™ Gmail [£ GoogleCalend... B Sony WE Linux » Im Other bookmarks
Jenkins lcbbb lcbbb.default.Functional.BF_serial_tx
y workspace
©) Build Now lcbbb-Functional.BF_serial_tx-default
£+ configure board: lcbbb
set: default
 Delete Project kernel: 4.4.155-ti-r155
results
=" Rename |test case build_number
17 |18 |19 [20 | 21 | 22
Bulld History A 01_Check_transmission_at_baud-rate_150 |PAss|PAss|pass|pass|pass|i~ss
02_Check_transmission_at_baud-rate_1200 |PAss|PAss|pass|pass|pass|pass
[find a 03_Check_transmission_at_baud-rate_9600 |PAss|Pass|pass|pass|pass|pass
04_Check_transmission_at_baud-rate_19200 |PAss|Pass|pass|pass|pass|pass
@ #22 Aug 26, 2021 10:16 PM

’ testlog run.json

o B21 Aug 26,2021 10:13 PM

@ #19 Aug 26,2021 10:06 PM

testlog runjson

#18 Aug 26, 2021 10:05 PM

-
\ testlog run.json
-

17 Aug 26, 2021 10:04 PM

05_Check_transmission_at_baud-rate_38400

PAss|PAss|Pass|PAss|Pass|PASS

06_Check_transmission_at_baud-rate_115200

PAss|PAss|Pass|Pass|pPass|Pass

07_Check_transmission_at_baud-rate_921600

PAss|PAss|Pass|pass|pass|pass

Totals
pass 7 7 7 7 7 7
fail 0 0 0 0 0 0
skip 0 0 0 0 0 0
error 0 0 0 0 0 0
Workspace

https://docs.google.com/file/d/1zXfz6YrAC6a6FwZ3g0M2Lqd1Z_DO8Mtp/preview

Excerpt from serial-transmit-test.sh:

test one_rate() {
TESTCASE="Check transmission at baud-rate $BAUD_RATE"
stty -F $DEVICE $BAUD_RATE raw -echo -echoe -echok
echo '{ "baud_rate": "$BAUD_RATE" }' | \
$CLIENT $SRESOURCE set-config serial

echo "Capturing data at lab resource $SRESOURCE"
TOKEN="$($CLIENT $RESOURCE serial start)"

echo "Transmitting data from DUT"
echo -n "$SEND_DATA" >$DEVICE

$CLIENT $SRESOURCE serial stop $TOKEN
RECEIVED_DATA="$($CLIENT $RESOURCE serial get-data $TOKEN)"
$CLIENT $SRESOURCE serial delete $TOKEN || \

echo "Warning: Could not delete data on server"

compare the data to get the testcase result
if ["$SEND_DATA" |= "$RECEIVED_DATA"] ; then
fail "$STESTCASE" "Received data does not match sent data"
else
succeed "$TESTCASE"
fi

www.timesys.com ©2021 Timesys Corp. fa] t I m e S y S

Get Resource {TestClient} {DeviceName} get-resource serial [{feature}] = RESOURCE=$(Ic bbb get-resource serial uart1)

Set Config {TestClient} {ResourceName} set-config {json config} echo '{ "baud_rate": "9600" }' | $(lc SRESOURCE serial set-config)
Start Capture {TestClient} {ResourceName} serial start token=$(Ilc SRESOURCE serial start)

Stop Capture {TestClient} {ResourceName} serial stop {token} Ic $RESOURCE serial stop $token

Get Data {TestClient} {ResourceName} serial get-data {token} Ic $RESOURCE serial get-data $token

Delete Data {TestClient} {ResourceName} serial delete {token} Ic $SRESOURCE serial delete $token

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Success

{“result”: “success”, “data”: <Resource Id>}
Failure

{“result’: “fail”, message:<reason for failure>}

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/serial/{feature}/

Success

{‘result”: “success”, “data”: <token>}

Failure

{"result”: “fail”’, message:<reason for failure>}

Start Capture /api/v0.2/resources/{ResourceName}/serial/start-capture/

Success

{"result”: “success”}

Failure

{"result”: “fail”’, message:<reason for failure>}

Stop Capture /api/v0.2/resources/{ResourceName}/serial/stop-capture/{token}

Success

{“result”: “success”, “data”: <raw serial data>}
Get Data /api/v0.2/resources/{ResourceName}/seriat/get-data/{token} Failure

{"result”: “fail”’, message:<reason for failure>}

Success

{result’: “success’}

Failure

{‘result”: “fail”, message:<reason for failure>}

Delete Data /api/v0.2/resources/{ResourceName}/serial/delete/{token}

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Test in 3 different frameworks:
LAVA/Standalone — test executes on DUT itself
Robot Test Framework
Fuego

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

*** Settings ***
Library Process
*** Variables ***

${DUT} baylibre_rpi2-1

${TEST_CLIENT} ebf

${COMMAND_GET_RESOURCE} ${TEST_CLIENT} ${DUT} get-resource power-measurement

${WORKLOAD_COMMAND} sudo stress --cpu 4 --io 3 --vm 2 --vm-bytes 256M --timeout 60s 2> /dev/null
${MAX_POWER_COMMAND} xargs -n 1|tail -n+2| cut -d',' -f2,3 --output-delimiter=""lawk '{printf "%.3f\n", $1*$2/1000000}'|sort -rjhead -1
${THRESHOLD_POWER} 2.5

*** Test Cases ***

Get Power-Measurement
${result} Run Process ${COMMAND_GET_RESOURCE} shell=True
Set Suite Variable ${RESOURCE} ${result.stdout}

${result}y Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement start shell=True
Set Suite Variable ${TOKEN} ${result.stdout}

${result} Run Process ${TEST_CLIENT} ${DUT} ssh run "${WORKLOAD_COMMAND}" shell=True
${result} Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement stop ${TOKEN} shell=True
Should Match ~ ${result.stdout} success

${result}y Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement get-data ${TOKEN} shell=True
Set Suite Variable ${POWER_DATA} ${result.stdout}

${result}y Run Process echo "${POWER_DATA}" | ${MAX_POWER_COMMAND} shell=True
Set Suite Variable ${MAX_POWER_USED} ${result.stdout}
Should Be True ${MAX_POWER_USED} <= ${THRESHOLD_POWER}

${result}y Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement delete ${TOKEN} shell=True

www.timesys.com ©2021 Timesys Corp.

sys

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

Activities @) Firefox Web Brow

4% W 100%

B Power-Measurement-L

& C D rile:///opt/test/log.htmixs1-t1 w @ =
H Genecated
Power-Measurement-Using-EBF-And-Robot Log 20210826 11:06.29 UTC405:30
27 seconds ago
Test Statistics
Total Statistics 2 Total : Pass : Fail : Skip : Elapsed: Pass/Fail/Skip
All Tests 1 1 0 0 0001:14
Statistics by Tag ¢ Total & Pass ¢ Fail ¢« Skip ¢+ Elapsed : Pass/Fail /Skip
No Tags
Statistics by Suite o Total s+ Pass s Fail o Skip s Elapsed: Pass/Fail /Skip
Power-Measurement-Using-EBF-And-Robot 1 1 0 0 0001:14
Test Execution Log
- mure Power-Measurement-Using-EBF-And-Robot 1113.67¢
Full Name: Power-Measurement-Using-EBF-And-Robot
Source: pliest Power-Measurement-Using-EBF-And-Robot.robot
Start/ End / Elapsed: 20210824 11.05:15.393 / 20210824 11:06:29.069 / 00.01:13,676
Status: 1 test total, 1 passed. 0 failed. 0 skipped
- (1E8T Get Power-Measurement
Full Name: Power-Moasurement-Using-EBF-And-Robot. Get Power-Measurement
Start | End / Elapsed: 20210824 11:05:15.431 / 20210824 11:06:29.068 / 00:01:13.637
Status: PASS
+ [KEYWORD) ${result] = Pewcess. Run Process ${COMMAND_GET_RESOURCE}, shell=True L
+ [KEYWORD) Buawn. Set Suite Variable ${RESOURCE], $iresult sidout) X)
+ IKEYWORD) S{result] = meces. Run Process ${TEST _CLIENT) ${RESOURCE) power-measuremont start, sholl=True
+ [KEYWORD) B Set Suite Variable ${ID], S{result stdout}
+ [KEYWORD) S(result) = Pecess. Run Process ${TEST_CLIENT) ${DUT) ssh run "${WORKLOAD_COMMANDY)", shellsTrue 5.
+ [KEYWORD) S{result] = Mocess. Run Process ${TEST_CLIENT) ${RESOURCE) power-measurement stop ${ID), shell=True :
+ [KEYWORD) muam Should Match ${result sidout). success
+ [KEYWORD| S({result) = Pecess. Run Process ${TEST CLIENT) ${RESOURCE) power-measurement get-data ${ID}, shell=True
+ (KEYWORD) maw Set Suite Variable ${POWER_DATA), ${result stdout) (002 v A @
- [KEYWORD) S(result] = Pucess. Run Process echo "${POWER_DATA)" | ${MAX_POWER_COMMAND), shell=True '
Documentation: Runs a process and waits for # 1o complote.

Stant/End/Elapsed: 20210824 11:06:27.475 | 20210824 11:06:27.524 / 00:00.00.049
11:06:27.476 INFO Starting process:

echo “tisestamp,voltage.current 1575244403,5147.164,251.488 1575244404,5145.399,259.879 1575244465,5146.011,256.994 1575244405,5146.318,255.648 1575244466,5146,170,256.486 1575244407,5141.307,286.604 1575244408,5137.000,301.942 1575244409,5133.862,317.577
1575244410,5131.332,330.177 1575244411,5129.396,339.817 1575244413,5127. 061,351 475 1575244414 5125 825,357 643 1575244415,5124.740,363.029 1575244416,5123.804,367.695 1575244416,5123.012,371.619 1575244417,5122.280,375.269 1575244418,5121.675,378.263
1575244419,5121.099,381.194 1575244420,5120.519,384.636 1575244421,5120.043,386.424 1575244422,5119.654,386,357 1575244424,5119.085,391.172 1575244425,5118.758,392.79]1 1575244426,5118.448,394.341 1575244427,5118.158,395.763 1575244427,5117.890,397.694
1575244428,5117.635,398.352 1575244429,5117.415,399.448 1575244430,5117.2668,400.470 1575244431,5117,027,401,360 1575244432,5116. 92,351 1575244434,5116.581,403,594 1575244435,5116.429,404.360 1575244436,5116.271,405.140 1575244437,5116.154,405.714
1575244438,5116.002,406.465 1575244439,5115 886,407.032 1575244439,5115.754, 407 .685 1575244440,5115.650,408.199 1575244441,5118, . L824 1575244442,5115.428,409.284 1575244444 ,5115.273,410.062 1575244445,5115.169,410.584 1575244446,5115.091,410.969
1575244447,5114.995,411.445 1575244448,5114.921,411.606 1575244449,5114.832,412.248 1575244450,5114.765,412,.576 1575244450,5114, 989 1575244451,5114.609,413.333 1575244453,5114.515,413.795 1575244454,5114.442,414.154 1575244455,5114.389,414.421
1575244456,5114.319,414.766 1575244457,5114.263,415.048 1575244458,5114,203,415,341 1575244459,5114,144,415.640 1575244460,5114,092,415.896 1575244461,5114.038,416,170 1575244461,5113.991,416.405 1575244463,5113.912.416.795 1575244464,5113.864,417,.030

https://docs.google.com/file/d/1ImFhKjSknULY82BKmvQAY5wtpmJPfn2h/preview

www.timesys.com ©2021 Timesys Corp. 888 t imes y S

£ lcbbb [Jenkins]
< > C
hd Yahoo!Mail 9 GoogleMaps & Google Bm Accounts Bm Testing B Tim ™ Gmail [£ GoogleCalend... Bm Sony W Linux »

@ localhost:8090/fuego/view/lcbbb/
M Other bookmarks

‘?_ Jenkins

Jenkins lcbbb

=« New Item

&5 People

.~ Build History
Edit View

O Delete View

A

+." Manage Jenkins

[y New View

Build Queue

No builds in the queue

Build Executor Status

= master
1 Idle

2 Idle

All I0zone LTP batch baylibre

kinstall min1 periodic_jobs

lcbbb.default.Benchmark.BF_power
test

lcbbb.default.Benchmark.Dhrystone

lcbbb.default.Functional.BF_serial_tx

lcbbb.default.Functional.fuego_board
_check

lcbbb.default.Functional.hello_world

N Atom feed for all

power_test

bb_problems bbb

reboot
Last Success

1 min 30 sec-
822

23 hr-#1

25 min - #22

18 hr-#82

N/A

d_problems
ren1 rp4

Last Failure

23 hr-8#11

N/A

1 hr 15 min -
8

14 days - #1

N/A

M\ Atom feed for Failures

docker

[%add description

fuego-test hello
rpi3 serial smoketest +

Last Duration

54 sec LD
Buill: scheduled
26 sec (%D

2

©
N/A 2

M Atom Feed for just latest builds

https://docs.google.com/file/d/15LaHKMZ5adGlUR7ZUmigfdQtszMXErk1/preview

function test_run {
WORKLOAD_COMMAND="sudo stress --cpu 4 --io 3 --vm 2 ... --timeout 20s ..."
echo "Executing power test using '$TEST_CLIENT' on '$DUT' using resource 'SRESOURCE"
token=$($TEST_CLIENT $RESOURCE power-measurement start) || true

report "echo Running 'stress' workload on $DUT"
report_append "${WORKLOAD_COMMAND}"

echo "Stopping power measurement capture"
$TEST_CLIENT $RESOURCE power-measurement stop $token

echo "Getting power measurement data"

log_this "echo START_POWER_DATA"

log_this "$TEST_CLIENT $RESOURCE power-measurement get-data $token"
log_this "echo END_POWER_DATA"

echo "Removing power measurement data from the server"
$TEST_CLIENT $RESOURCE power-measurement delete $token

www.timesys.com ©2021 Timesys Corp.

stimesys

Promote the use of the APl and implementations

Add APIs

canbus is next on the list
— expect to be able to use set-config/capture/put APIls

USB connect/disconnect
What API would you like to see?
Add more clients and client examples
LTP serial port test
Upstream EBF changes to LAVA
Use for more production testing
More real-world testing, especially for new APIs, to help refine them

©2021 Timesys Corp. 888 t ime S y S

www.timesys.com

Would be good to establish an ecosystem of lab resource drivers
Establish standards for dropping new resources into existing labs
— Example — Easily add Fuego resource controller with hardware into Timesys
EBF infrastructure

www.timesys.com ©2021 Timesys Corp. gtimes ySs

www.timesys.com ©2021 Timesys Corp. 89 t imes y S

Embedded Linux
Conference

&3

www.timesys.com ©2021 Timesys Corp. 89 t imes y S

Fuego can run tests in 'standalone' mode, or as more traditional host/target
Fuego jobs
Standalone mode requires device under test to be configured with lab client
Host/target mode does farm operations from test framework host

www.timesys.com ©2021 Timesys Corp. gtimes ySs

