
Board Farm APIs
for Automated Testing of

Embedded Linux – An Update
Tim Bird

Principal Software Engineer
Sony Electronics

Harish Bansal
Technical Engineer

Timesys

www.timesys.com ©2021 Timesys Corp.

2 Abstract

This talk presents an update on work to create a standard API between automated tests and
Board Farm hardware and software. Last year, we introduced the notion of a dual
REST/command-line API that could be used for discovery, control and operation of hardware
and network resources in a test lab. Since then, the scope of the work has increased, and
there are now APIs for control of additional lab hardware.

Multiple implementations of the API (both server and client side) have been created. We will
describe the new APIs we have added, and demonstrate new tests that work with the REST
API system, including power measurement tests and hardware serial port tests. Also, we will
discuss how we envision using the API architecture for additional hardware testing, such as
CANbus, or A/V testing. Although different equipment is utilized in different test labs (or Board
Farms), by using the REST API the same test can be run in the different labs to obtain test
results and provide quality assurance for products.

It is hoped that this Board Farm API abstraction will pave the way for more sharing of
automated tests and testing resources, to accelerate the use of automated testing for
products based on embedded Linux.

www.timesys.com ©2021 Timesys Corp.

3 Outline

▪ Review of REST API concepts
▪ Status since last year

• Resource model
▪ Demos

• Power measurement APIs and demo
• Camera APIs and demo
• Serial port APIs and demo

▪ Proof point
• 3 Test Frameworks (Lava, Fuego, Robot Framework) running on top

of APIs
▪ Future directions

www.timesys.com ©2021 Timesys Corp.

4 Problem statement (review)
▪ There are many tests but no standardized way of running tests on physical

devices
▪ There are many different Test Frameworks
▪ There are a few Board Farm frameworks

• But no standardized way to use different Test Frameworks or run tests
▪ Every farm implements test infrastructure differently

• Many labs use ad-hoc infrastructure
– Cobble together available hardware, and write custom scripts for control and data

collection
• Tests written for one lab do not work in another lab

▪ Nobody can share tests
Solution:
▪ Creating a standard method to access a Board Farm allows:

• Board Farm technologies can evolve separately from the interface to the farm
• Tests can be written that work in more than one lab
• Test Frameworks can work with more than one lab

www.timesys.com ©2021 Timesys Corp.

5 Examples of hardware/software integration tests

▪ GPIO test, serial port test
• Need to control two endpoints

– One on device under test (DUT) and one external endpoint
▪ Audio, video playback test

• Need to control two endpoints
– One on device under test (DUT) and a capture device

▪ Power measurement (via external power monitor)
• Need to control two endpoints:

– Application or workload profile on DUT
– Capture of power measurement data on external power monitor

▪ USB connect/disconnect (robustness) testing
• Need to control two endpoints:

– Application or monitor on DUT
– USB hardware external to board (drop/reconnect vbus)

www.timesys.com ©2021 Timesys Corp.

6 High level concept 1 – API between framework
and lab

Board
Farm 1

Board
Farm 2

Board
Farm 3

REST API

Test Framework A
CLI

Test Framework B
APIs

Test Framework C
APIs

www.timesys.com ©2021 Timesys Corp.

7 High level concept 2 – API between test and lab

REST API

Test Framework A
CLI

Test Framework B
APIs

Test Framework C
APIs

GPIO
endpoints

Power
measurement

USB
endpoint

Power
control

Network Audio/video
capture

Storage

Board in
lab

www.timesys.com ©2021 Timesys Corp.

8 REST API elements

▪ API proposal
• 2 parts

– web-based REST API
– Command line interface

▪ REST API based on https and JSON
• Extension to LAVA/Django REST API
• Only requires curl and jq

▪ Command line tool
• Same operations as REST API
• Suitable for automated use, as well as human interactive use

www.timesys.com ©2021 Timesys Corp.

What has happened
since last year?

www.timesys.com ©2021 Timesys Corp.

10 Added since last year

▪ More implementations
▪ Added the resource model

• new API: get-resource
▪ Added the generic capture API model

• start-capture, stop-capture, get-data, delete
▪ APIs for new resource types:

• power measurement
• image and video capture
• serial port receive and transmit

▪ Direct support for API in Fuego
▪ Created test example in Robot Test Framework

www.timesys.com ©2021 Timesys Corp.

11 More implementations

▪ Extended original implementation
• LAVA server is based on Django
• Is in production use now, as part of Timesys Embedded Board Farm service
• EBF client supports new APIs

– Is a shell-based client using curl and jq
– Git repo: https://github.com/TimesysGit/board-farm-rest-api

▪ Created LabControl server and client implementation
• lcserver is a plain CGI script (no framework)
• ‘lc’ is a python client, using the python requests module
• source is available now

– But should be considered alpha-level quality
– Git Repo: https://github.com/tbird20d/labcontrol.git

https://github.com/TimesysGit/board-farm-rest-api
https://github.com/tbird20d/labcontrol.git

www.timesys.com ©2021 Timesys Corp.

12 Implementation issues

▪ Found some incompatibilities between implementations
▪ Goal:

• Use both clients (ebf and lc) with both servers (EBF and labcontrol)
▪ Use of python requests module showed some issues with API

definitions
• curl and requests perform same operations with different form encoding

– Have to make sure that wire protocol matches exactly
▪ Both labs have APIs that the other lab does not support yet

• EBF: APIs for storage management
• labcontrol: serial receive/transmit

www.timesys.com ©2021 Timesys Corp.

13 Added the resource model

▪ Previously, all operations were relative to the device under test
• e.g.: api/v0.2/devices/{board}/power/on

▪ Introduced new ‘resource’ model
• To perform an operation:

– First, get the resource that is associated with the DUT, for this operation type
– Perform operations with a resource, instead of board:

▪ api/v0.2/resources/{resource}/camera/start-capture

▪ Uses a new api to retrieve the resource assignment
• api/v0.2/devices/{board}/get-resource/camera
• resource=$(ebf rpi4 get-resource camera)

www.timesys.com ©2021 Timesys Corp.

14 Resource model benefits

▪ Is more flexible
• More than one resource of a particular type can be assigned to a board

– board-based API assumes 1:1 mapping between lab resource and DUT
– e.g.: power-measurement at multiple probe points on the board

• A resource can be associated with multiple boards
– e.g.: power control – it’s very common for a single power controller to control

multiple boards
▪ In the future:

• Can support dynamic multiplexing
– Control the resource assignment at runtime
– Reserve the resource for the duration of usage

www.timesys.com ©2021 Timesys Corp.

15 DUT connections with resource model

Test Framework A
CLI

Test Framework B
APIs

Test Framework C
APIs

REST API

GPIO
endpoints

Power
measurement

1

USB
endpointPower

control

Network

Audio/video
capture

1
Storage

Power
measurement

2

Audio/video
capture

2

Board in
lab

www.timesys.com ©2021 Timesys Corp.

16 Supported resource types

▪ Currently supported resource types are:
• Power-measurement
• Camera
• Serial

▪ Ones that are envisioned:
• Canbus
• USB

www.timesys.com ©2021 Timesys Corp.

17 Added the generic capture API model

▪ Generic ‘capture’ API consist of 4 verbs:
• Start-capture

– Begin capturing data
– Returns a token for capture data manipulation

• Stop-capture
– Stop capturing data

• Get-data
– Retrieve the data from the server

• Delete
– Remove the data from the server

www.timesys.com ©2021 Timesys Corp.

18 APIs for new resource types

▪ Power measurement
• start-capture, stop-capture, get-data, delete

▪ Image and video capture
• capture still image
• start-capture, start-capture with duration, stop-capture, get-ref – for videos

▪ Serial port transmit
• DUT as transmitter
• lab resource as receiver

– set-config, start-capture, stop-capture, get-data, delete
▪ Serial port receive

• DUT as receiver
• lab resource as transmitter

– set-config, put-data

www.timesys.com ©2021 Timesys Corp.

19 The gory details
REST APIs CLI Commands

Resource

Get Resource
/api/v0.2/devices/{DeviceName}/get-resource/{Resource-Type}/
Get Resource by feature
/api/v0.2/devices/{DeviceName}/get-resource/{Resource-Type}/{feature_n
ame}

Get Resource
$CLIENT {DeviceName} get-resource {ResourceType}
Get Resource by feature
$CLIENT {DeviceName} get-resource {ResourceType} {feature}

Power
Measurement

Start Capture
/api/v0.2/resources/{ResourceName}/power-measurement/start-capture/
Stop Capture
/api/v0.2/resources/{ResourceName}/power-measurement/stop-capture/{t
oken}
Get Data
/api/v0.2/resources/{ResourceName}/power-measurement/get-data/{token
}
Delete Data
/api/v0.2/resources/{ResourceName}/power-measurement/delete/{token}

Start Capture
$CLIENT {ResourceName} power-measurement start
Stop Capture
$CLIENT {ResourceName} power-measurement stop {token}
Get Data
$CLIENT {ResourceName} power-measurement get-data {token}
Delete Data
$CLIENT {ResourceName} power-measurement delete {token}

Camera

Capture Still Image
/api/v0.2/resources/{ResourceName}/camera/capture/
Start Capture
/api/v0.2/resources/{ResourceName}/camera/start-capture/
/api/v0.2/resources/{ResourceName}/camera/start-capture/{Duration}
Get Reference
/api/v0.2/resources/{ResourceName}/camera/get-ref/{token}/

Capture Still Image
$CLIENT {ResourceName} camera capture
$CLIENT {ResourceName} camera capture -o {Filename}
Start Capture
$CLIENT {ResourceName} camera start-capture
$CLIENT {ResourceName} camera start-capture -d {Duration}
Get Reference
$CLIENT {ResourceName} camera get-ref {Video-Id}
$CLIENT {ResourceName} camera get-ref {Video-Id} -o {Filename}

www.timesys.com ©2021 Timesys Corp.

20 The gory details (prototype API – not yet confirmed)
REST APIs CLI Commands

Serial

Start Capture
/api/v0.2/resources/{ResourceName}/serial/start-capture/
Stop Capture
/api/v0.2/resources/{ResourceName}/serial/stop-capture/{token}
Get Data
/api/v0.2/resources/{ResourceName}/serial/get-data/{token}
Delete Data
/api/v0.2/resources/{ResourceName}/serial/delete/{token}
Set Config
/api/v0.2/resources/{ResourceName}/serial/set-config/
POST - { "baud_rate": "115200" } as data for post
Put Data
/api/v0.2/resources/{ResourceName}/serial/put-data/{token}
POST - raw data

Start Capture
$CLIENT {ResourceName} serial start
Stop Capture
$CLIENT {ResourceName} serial stop {token}
Get Data
$CLIENT {ResourceName} serial get-data {token}
Delete Data
$CLIENT {ResourceName} serial delete {token}
Set Config
echo "{ \"baud_rate\": \"115200\"" | $CLIENT
{ResourceName} serial set-config
Put Data
$CLIENT {ResourceName} serial put-data <raw_data

www.timesys.com ©2021 Timesys Corp.

21 Direct support for API in Fuego

▪ Last year, Fuego used the API via a wrapper (‘ttc’) that it already
supported

▪ Now, a Fuego user can specify a transport of either ‘ebf’ or ‘lc’ for a
board, and have tests performed using the API directly

• This requires less configuration inside the Fuego docker container
• No 'ttc' wrapper between Fuego and the board farm client

www.timesys.com ©2021 Timesys Corp.

22 Some miscellaneous features

▪ Support for recursive directory copy
• Can copy an entire directory to or from the DUT

▪ Support for debugging commands
• ebf supports ‘—debug’ argument, which generates a trace of the API request

and response
– Is very useful to see data structures on wire

▪ Have added sample tests showing API usage

www.timesys.com ©2021 Timesys Corp.

Use case:

Lab-independent power
measurement test

www.timesys.com ©2021 Timesys Corp.

24 Power measurement test – REST API use
overview

Assumption:

▪ Lab knows the binding of DUT
and power measurement device

• Resource ACME is assigned to
the Raspberry Pi

Lab
Resource

ACME power
measurement

board

DUT
 (Raspberry Pi)

power
probe

 (REST-API)

 (REST-API)

c
b,d

Test Steps:

a. Get PM resource associated with
DUT

b. Start PM data capture
c. Run Workload
d. Stop capture, get data
e. Analyze and report results

www.timesys.com ©2021 Timesys Corp.

Video of actual PM test execution

(We did it!!)

www.timesys.com ©2021 Timesys Corp.

https://docs.google.com/file/d/1ZWmH06kMV1OBFjP80wK1XKe46xU32kZX/preview

www.timesys.com ©2021 Timesys Corp.

27 What the API looks like in practice

Excerpt from power-measurement-test.sh:
echo "Getting power measurement resource for board"
RESOURCE=$($CLIENT $BOARD get-resource power-measurement)

echo "Starting power measurement"
token=$($CLIENT $RESOURCE power-measurement start)
if ["$?" != "0"] ; then
 error_out "Could not start power measurement with $CLIENT, with resource $RESOURCE"
fi

echo "Performing some workload (stress test)"
${CLIENT} ${BOARD} ssh run "${WORKLOAD_COMMAND}"

echo "Stopping power measurement"
$CLIENT $RESOURCE power-measurement stop $token || \
 error_out "Could not stop power measurement with $CLIENT"

echo "Getting data"
POWER_DATA=$($CLIENT $RESOURCE power-measurement get-data $token) || \
 error_out "Could not get power data with $CLIENT, using token $token"
echo $POWER_DATA

MAX_POWER_USED=`echo "$POWER_DATA" | xargs -n 1| tail -n+2| cut -d',' -f2,3 --output-delimiter=' '| awk '{printf "%.3f\\n", $1*$2/1000000}'| sort -r| head -1`
echo "MAX-POWER-USED=$MAX_POWER_USED"
echo "THRESHOLD-POWER=$THRESHOLD_POWER"
echo "Deleting the data on the server"
$CLIENT $RESOURCE power-measurement delete $token || \
 echo "Warning: Could not delete data for token $token on server"

www.timesys.com ©2021 Timesys Corp.

28 PM CLI tool commands

Operation CLI Command Example

Get Resource {TestClient} {DeviceName} get-resource power-measurement RESOURCE=$(ebf baylibre_rpi2-1 get-resource
power-measurement)

Start Capture {TestClient} {ResourceName} power-measurement start token=$(ebf $RESOURCE power-measurement start)

Stop Capture {TestClient} {ResourceName} power-measurement stop {token} ebf $RESOURCE power-measurement stop $token

Get Data {TestClient} {ResourceName} power-measurement get-data
{token} ebf $RESOURCE power-measurement get-data $token

Delete Data {TestClient} {ResourceName} power-measurement delete {token} ebf $RESOURCE power-measurement delete $token

www.timesys.com ©2021 Timesys Corp.

29 PM REST API details

Operation Route Response (Data Type - JSON)

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/{ResourceType}/

Success
{“result”: “success”, “data”: <Resource Id>}
Failure
{“result”: “fail”, message:<reason for failure>}

Start Capture /api/v0.2/resources/{ResourceName}/power-measurement/start-capture/

Success
{“result”: “success”, “data”: <token>}
Failure
{“result”: “fail”, message:<reason for failure>}

Stop Capture /api/v0.2/resources/{ResourceName}/power-measurement/stop-capture/{to
ken}

Success
{“result”: “success”}
Failure
{“result”: “fail”, message:<reason for failure>}

Get Data /api/v0.2/resources/{ResourceName}/power-measurement/get-data/{token}

Success
{“result”: “success”, “data”: <csv string with
power measurement readings>}
Failure
{“result”: “fail”, message:<reason for failure>}

Delete Data /api/v0.2/resources/{ResourceName}/power-measurement/delete/{token}

Success
{“result”: “success”}
Failure
{“result”: “fail”, message:<reason for failure>}

www.timesys.com ©2021 Timesys Corp.

30 Camera

Assumption:

▪ Lab knows the binding of DUT
and camera

• Resource CAM1 is assigned to
the Raspberry Pi

Test Steps:

a. Get Camera resource associated
with DUT

b. Start Video Recording for a
configured duration

c. Reboot DUT
d. Get Video recording

DUT
(Raspberry Pi)

Lab Resource

Camera
(CAM1)

c

a, b, d

Lab

Power Controller

 (REST-API)

 (REST-API)

www.timesys.com ©2021 Timesys Corp.

https://docs.google.com/file/d/1qnl4lG_iyiIcmC58FyOz9vbyumw_Edg7/preview

www.timesys.com ©2021 Timesys Corp.

32 What the API looks like in practice

Excerpt from camera-test.sh:
RESOURCE=$(ebf $DUT get-resource camera)
if [$? -eq 0];then
 echo "Start Capturing Video"
 VIDEO_ID=$(ebf $RESOURCE camera start-capture -d $DURATION)
 if [$? -eq 0];then
 echo "Rebooting the Board"
 ebf $DUT power reboot
 if [$? -eq 0];then
 sleep "$TIME"s
 VIDEO_URL=$(ebf $RESOURCE camera get-ref $VIDEO_ID)
 echo "VIDEO_URL=$VIDEO_URL"
 else
 echo "Couldn't reboot the board"
 exit 1
 fi
 else
 echo "Couldn't start video capturing"
 exit 1
 fi
else
 echo "Couldn't get camera resource for video capturing"
 exit 1
fi

www.timesys.com ©2021 Timesys Corp.

33 Camera CLI commands

Operation CLI Command Example

Get Resource {TestClient} {DeviceName} get-resource camera RESOURCE=$(ebf raspbian get-resource camera)

Capture
{TestClient} {ResourceName} camera capture
{TestClient} {ResourceName} camera capture -o
{Filename}

ebf $RESOURCE camera capture

ebf $RESOURCE camera capture -o screenshot.jpeg

Start Capture
{TestClient} {ResourceName} camera start-capture
{TestClient} {ResourceName} camera start-capture -d
{Duration}

VIDEO_ID=$(ebf $RESOURCE camera start-capture)

VIDEO_ID=$(ebf $RESOURCE camera start-capture -d
$DURATION)

Get
Reference

{TestClient} {ResourceName} camera get-ref {VIDEO_ID}
{TestClient} {ResourceName} camera get-ref {VIDEO_ID}
-o {Filename}

ebf $RESOURCE camera get-ref $VIDEO_ID

ebf $RESOURCE camera get-ref $VIDEO_ID -o recording.mp4

www.timesys.com ©2021 Timesys Corp.

34 Camera REST API details

Operation Route Response (Data Type - JSON)

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/{ResourceType}/
Success
{“result”: “success”, “data”: <Resource Id>}
Failure
{“result”: “fail”, message:<reason for failure>}

Capture /api/v0.2/resources/{ResourceName}/camera/capture/
Success
{“result”: “success”, “data”: <Image URL>}
Failure
{“result”: “fail”, message:<reason for failure>}

Start Capture
/api/v0.2/resources/{ResourceName}/camera/start-capture/
/api/v0.2/resources/{ResourceName}/camera/start-capture/{Du
ration}

Success
{“result”: “success”, “data”: {“token”: <Video Id>}}
Failure
{“result”: “fail”, message:<reason for failure>}

Get Reference /api/v0.2/resources/{ResourceName}/camera/get-ref/{token}
Success
{“result”: “success”, “data”: <Video URL>}
Failure
{“result”: “fail”, message:<reason for failure>}

www.timesys.com ©2021 Timesys Corp.

35 Serial

Test of Serial hardware

RS232

1. Use REST API to configure lab
resource as Rx or Tx, and baud rate

2. Use local commands to set DUT
serial RX or TX and baud rate

3. Initiate capture
4. Initiate serial data transfer
5. End capture, collect log
6. Compare transmission vs capture

data

DUT
Lab Resource

Serial

2, 4, 5

4 – serial
data

1, 3, 5

www.timesys.com ©2021 Timesys Corp.

Video of Fuego
serial test execution

www.timesys.com ©2021 Timesys Corp.

https://docs.google.com/file/d/1zXfz6YrAC6a6FwZ3g0M2Lqd1Z_DO8Mtp/preview

www.timesys.com ©2021 Timesys Corp.

38 What the API looks like in practice

Excerpt from serial-transmit-test.sh:
test_one_rate() {
 TESTCASE="Check transmission at baud-rate $BAUD_RATE"
 stty -F $DEVICE $BAUD_RATE raw -echo -echoe -echok
 echo '{ "baud_rate": "$BAUD_RATE" }' | \
 $CLIENT $RESOURCE set-config serial

 echo "Capturing data at lab resource $RESOURCE"
 TOKEN="$($CLIENT $RESOURCE serial start)"

 echo "Transmitting data from DUT"
 echo -n "$SEND_DATA" >$DEVICE

 $CLIENT $RESOURCE serial stop $TOKEN
 RECEIVED_DATA="$($CLIENT $RESOURCE serial get-data $TOKEN)"
 $CLIENT $RESOURCE serial delete $TOKEN || \
 echo "Warning: Could not delete data on server"

 # compare the data to get the testcase result
 if ["$SEND_DATA" != "$RECEIVED_DATA"] ; then
 fail "$TESTCASE" "Received data does not match sent data"
 else
 succeed "$TESTCASE"
 fi

www.timesys.com ©2021 Timesys Corp.

39 Serial REST API – CLI tool commands

Operation CLI Command Example

Get Resource {TestClient} {DeviceName} get-resource serial [{feature}] RESOURCE=$(lc bbb get-resource serial uart1)

Set Config {TestClient} {ResourceName} set-config {json config} echo '{ "baud_rate": "9600" }' | $(lc $RESOURCE serial set-config)

Start Capture {TestClient} {ResourceName} serial start token=$(lc $RESOURCE serial start)

Stop Capture {TestClient} {ResourceName} serial stop {token} lc $RESOURCE serial stop $token

Get Data {TestClient} {ResourceName} serial get-data {token} lc $RESOURCE serial get-data $token

Delete Data {TestClient} {ResourceName} serial delete {token} lc $RESOURCE serial delete $token

www.timesys.com ©2021 Timesys Corp.

40 Serial REST API details

Operation Route Response (Data Type - JSON)

Get Resource /api/v0.2/devices/{DeviceName}/get-resource/serial/{feature}/

Success
{“result”: “success”, “data”: <Resource Id>}
Failure
{“result”: “fail”, message:<reason for failure>}

Start Capture /api/v0.2/resources/{ResourceName}/serial/start-capture/

Success
{“result”: “success”, “data”: <token>}
Failure
{“result”: “fail”, message:<reason for failure>}

Stop Capture /api/v0.2/resources/{ResourceName}/serial/stop-capture/{token}

Success
{“result”: “success”}
Failure
{“result”: “fail”, message:<reason for failure>}

Get Data /api/v0.2/resources/{ResourceName}/seriat/get-data/{token}

Success
{“result”: “success”, “data”: <raw serial data>}
Failure
{“result”: “fail”, message:<reason for failure>}

Delete Data /api/v0.2/resources/{ResourceName}/serial/delete/{token}

Success
{“result”: “success”}
Failure
{“result”: “fail”, message:<reason for failure>}

www.timesys.com ©2021 Timesys Corp.

41 PM test Rosetta Stone

▪ Test in 3 different frameworks:
• LAVA/Standalone – test executes on DUT itself
• Robot Test Framework
• Fuego

www.timesys.com ©2021 Timesys Corp.

42 Robot Framework PM test

*** Settings ***
Library Process
*** Variables ***
${DUT} baylibre_rpi2-1
${TEST_CLIENT} ebf
${COMMAND_GET_RESOURCE} ${TEST_CLIENT} ${DUT} get-resource power-measurement
${WORKLOAD_COMMAND} sudo stress --cpu 4 --io 3 --vm 2 --vm-bytes 256M --timeout 60s 2> /dev/null
${MAX_POWER_COMMAND} xargs -n 1|tail -n+2| cut -d',' -f2,3 --output-delimiter=' '|awk '{printf "%.3f\\n", $1*$2/1000000}'|sort -r|head -1
${THRESHOLD_POWER} 2.5
*** Test Cases ***
Get Power-Measurement
 ${result} Run Process ${COMMAND_GET_RESOURCE} shell=True
 Set Suite Variable ${RESOURCE} ${result.stdout}

 ${result} Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement start shell=True
 Set Suite Variable ${TOKEN} ${result.stdout}

 ${result} Run Process ${TEST_CLIENT} ${DUT} ssh run "${WORKLOAD_COMMAND}" shell=True
 ${result} Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement stop ${TOKEN} shell=True
 Should Match ${result.stdout} success

 ${result} Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement get-data ${TOKEN} shell=True
 Set Suite Variable ${POWER_DATA} ${result.stdout}

 ${result} Run Process echo "${POWER_DATA}" | ${MAX_POWER_COMMAND} shell=True
 Set Suite Variable ${MAX_POWER_USED} ${result.stdout}
 Should Be True ${MAX_POWER_USED} <= ${THRESHOLD_POWER}

 ${result} Run Process ${TEST_CLIENT} ${RESOURCE} power-measurement delete ${TOKEN} shell=True

www.timesys.com ©2021 Timesys Corp.

Video of Robot Framework
power measurement test

www.timesys.com ©2021 Timesys Corp.

https://docs.google.com/file/d/1ImFhKjSknULY82BKmvQAY5wtpmJPfn2h/preview

www.timesys.com ©2021 Timesys Corp.

Video of Fuego
power measurement test

www.timesys.com ©2021 Timesys Corp.

https://docs.google.com/file/d/15LaHKMZ5adGlUR7ZUmigfdQtszMXErk1/preview

www.timesys.com ©2021 Timesys Corp.

47 Fuego PM test

function test_run {
 WORKLOAD_COMMAND="sudo stress --cpu 4 --io 3 --vm 2 … --timeout 20s ..."
 echo "Executing power test using '$TEST_CLIENT' on '$DUT' using resource '$RESOURCE'"
 token=$($TEST_CLIENT $RESOURCE power-measurement start) || true
 ...
 report "echo Running 'stress' workload on $DUT"
 report_append "${WORKLOAD_COMMAND}"
 …
 echo "Stopping power measurement capture"
 $TEST_CLIENT $RESOURCE power-measurement stop $token

 echo "Getting power measurement data"
 log_this "echo START_POWER_DATA"
 log_this "$TEST_CLIENT $RESOURCE power-measurement get-data $token"
 log_this "echo END_POWER_DATA"

 echo "Removing power measurement data from the server"
 $TEST_CLIENT $RESOURCE power-measurement delete $token
}

www.timesys.com ©2021 Timesys Corp.

48 What’s next?

▪ Promote the use of the API and implementations
▪ Add APIs

• canbus is next on the list
– expect to be able to use set-config/capture/put APIs

• USB connect/disconnect
• What API would you like to see?

▪ Add more clients and client examples
• LTP serial port test
• Upstream EBF changes to LAVA

▪ Use for more production testing
• More real-world testing, especially for new APIs, to help refine them

www.timesys.com ©2021 Timesys Corp.

49 What’s next? (cont’d)

▪ Would be good to establish an ecosystem of lab resource drivers
• Establish standards for dropping new resources into existing labs

– Example – Easily add Fuego resource controller with hardware into Timesys
EBF infrastructure

www.timesys.com ©2021 Timesys Corp.

Supplemental Slides

(Not presented)

www.timesys.com ©2021 Timesys Corp.

Questions or comments?

www.timesys.com ©2021 Timesys Corp.

53 Direct support for API in Fuego (a bit more)

▪ Fuego can run tests in 'standalone' mode, or as more traditional host/target
Fuego jobs

• Standalone mode requires device under test to be configured with lab client
• Host/target mode does farm operations from test framework host

