
TheBazaar . Engineering . MemoryAccountingTools
-- SteveLongerbeam - 05 Feb 2004

ConsumerEdition Memory Accounting Tools

Technical Specification for Displaying Memory Usage

Contents

Technical Specification for Displaying Memory Usage
Contents♦
Introduction♦
Purpose of Feature♦
Feature Requirements♦
High Level Design

Global Memory Usage
/proc/meminfo⋅
/proc/nodeinfo⋅
/proc/memmap⋅
/proc/iomem⋅

◊

Per-Process Memory Usage
/proc/[pid]/maps⋅
/proc/[pid]/memmap⋅
/proc/[pid]/nodemap⋅
/proc/[pid]/statrm⋅
/proc/[pid]/statm⋅

◊

♦

Acceptance Criteria♦
Use Cases♦
Additional Information♦
Known Problems♦

•

Introduction

This specification describes various /proc filesystem entries that display total and
per-process memory usage information in a Linux system.

Purpose of Feature

The /proc entries described in this specification can be used to analyze memory usage.
Several /proc entries display global usage, i.e. whether memory is free or is being used
for any purpose. The rest of the /proc entries show memory usage by specific processes.

Together, these /proc entries make it possible to determine if and how page frames are
being used both globally and per process. If a page frame is being used by a process, it
can also be determined whether that page is used only by that process (private) or shared
with other processes.

Feature Requirements

The /proc tools must make it possible to get an accurate accounting of all system
memory pages required by a process, and which and how many are currently used by the
process.

•

The tools must make it possible to determine which, and how many, memory pages are
program text, program data, and shared library text and data.

•

 TheBazaar . Engineering . MemoryAccountingTools

 Technical Specification for Displaying Memory Usage 1

The tools must make it possible to determine which, and how many, memory pages are
shared with other processes, and which and how many are private.

•

The tools must make it possible to determine how many pages are reserved from
process usage, i.e. are reserved for kernel text and data.

•

High Level Design

Global Memory Usage

There are four /proc entries that provide global memory usage information.

/proc/meminfo

This is the standard global memory information entry, and provides total, used, and free
numbers for memory and swap space, in units of bytes and kilobytes.

Refer to the proc(5) man page (man 5 proc) for more information about /proc/meminfo.

/proc/nodeinfo

This is a new entry that displays the memory nodes in the system. Systems with physically
contiguous memory will have only one node, but NUMA machines and machines with
discontiguous memory will have two or more nodes. An example output is:

node id start end defalloc name
------- -------- -------- -------- --------
 0 10000000 11000000 1 SDRAM0
 1 11000000 11800000 0 SDRAM1
 2 11c00000 12000000 0 SDRAM2
 3 20000000 2002e000 0 SRAM

Start and end are the physical start and end addresses of the memory node. The defalloc
column will appear if the kernel supports MemoryTypeBasedAllocation, but will be absent if
not. The last column displays the name of the node if any.

/proc/memmap

This entry provides a global view of the free and allocated physical memory pages. It
provides data in a bit map format, one bit represents a single page frame. A one means the
page is allocated, a zero means the page is free.

The /proc entry that measures this memory walks through all nodes, and within each node,
walks through all page descriptors. If the page is not reserved for kernel use, and has a
page usage count of zero, it is a free page and the corresponding bit in the bitmap is
cleared, otherwise it is in use and the bit is set.

This bit map is displayed as an array of 32-bit unsigned integers in hexadecimal format.
Eight unsigned integers are displayed per line, so each line represents 8*32 = 256 pages.

The /proc/memmap entry will appear by enabling the kernel config option
CONFIG_MEMORY_ACCOUNTING.

/proc/iomem

This entry lists the range of physical addresses reserved by the kernel for its code and
data:

% cat /proc/iomem | grep Kernel

 TheBazaar . Engineering . MemoryAccountingTools

 High Level Design 2

 00100000-0022d98a : Kernel code
 0022d98b-00298b7f : Kernel data

In the above example, 301 pages are reserved for kernel code, and 107 pages are reserved
for kernel data.

Refer to the proc(5) man page (man 5 proc) for more information about /proc/iomem.

Per-Process Memory Usage

There are five /proc entries that provide process memory usage information.

/proc/[pid]/maps

This is the standard process memory map entry. A single line is displayed for each of the
processes virtual memory regions (VMA). A sample output is (in this case the map for a
bash shell):

00008000-0008d000 r-xp 00000000 00:09 2524773 /bin/bash
00094000-0009a000 rw-p 00084000 00:09 2524773 /bin/bash
0009a000-000c7000 rwxp 00000000 00:00 0
40000000-40016000 r-xp 00000000 00:09 2359683 /lib/ld-2.3.2.so
40016000-40017000 rw-p 00000000 00:00 0
4001d000-4001f000 rw-p 00015000 00:09 2359683 /lib/ld-2.3.2.so
4001f000-40054000 r-xp 00000000 00:09 2360362 /lib/libncurses.so.5.2
40057000-40064000 rw-p 00030000 00:09 2360362 /lib/libncurses.so.5.2
40064000-40067000 rw-p 00000000 00:00 0
40067000-40069000 r-xp 00000000 00:09 2360339 /lib/libdl-2.3.2.so
4006f000-40072000 rw-p 00000000 00:09 2360339 /lib/libdl-2.3.2.so
40072000-4018b000 r-xp 00000000 00:09 2360334 /lib/libc-2.3.2.so
40192000-40197000 rw-p 00118000 00:09 2360334 /lib/libc-2.3.2.so
40197000-40199000 rw-p 00000000 00:00 0
40199000-401a2000 r-xp 00000000 00:09 2360338 /lib/libnss_files-2.3.2.so
401a9000-401aa000 rw-p 00008000 00:09 2360338 /lib/libnss_files-2.3.2.so
bfffb000-c0000000 rwxp ffffc000 00:00 0

The VMA information displayed per line is:

virtual start address in hexadecimal•
virtual end address in hexadecimal•
permissions•
file byte offset (if the VMA maps a file) in hexadecimal•
device major:minor numbers of the block device containing the file being mapped (if
the VMA maps a file)

•

file inode number (if the VMA maps a file)•
file name (if the VMA maps a file)•

Refer to the proc(5) man page (man 5 proc) for more information about /proc/[pid]/maps.

/proc/[pid]/memmap

This entry displays detailed information about whether pages are resident (allocated and
mapped) within each region of the process. Just as in /proc/[pid]/maps above, one line is
displayed for each VMA of the process.

Each line displays two characters for each page-size chunk of the region. If a page is not
yet resident for that chunk, a space and dash " -" is displayed, otherwise the usage
counter of the resident page is displayed in decimal, as in " 2" or "10".

 TheBazaar . Engineering . MemoryAccountingTools

 Per-Process Memory Usage 3

The /proc entry code accomplishes this by walking through each regions page table entries
(pte) to determine if a physical page is resident for that area, determined by the
"present" bit in the pte. If so, the pte is converted to a page descriptor and the page
usage counter is printed, otherwise " -" is printed.

A sample output, corresponding to the bash shell’s memory map displayed above, is:

 3 - 3 3 3 3 ...
 1 1 1 1 1 1
 1 ...
10101010101010101111101011101010101111111010
 1
 1 1
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 - - - - - - - - - - - - - - - - - 3 - - - ...
 - - - - 1 1 1 1 1 1 1 1 1
 - - 1
 4 4
 - 1 1
11 - - - - - - - - - 4 4 ...
 1 1 1 1 1
 1 1
 6 6 6 - - 3 - - 6
 1
 1 - 1 1 1

Notice the first line, which corresponds to the text of bash. Notice that most of this
region has resident pages, and most of the resident pages have a usage count of 3. This
means that there are currently 2 bash shells running. Two of the three usage counts
represent the page being mapped in the two bash processes page tables, and the remaining
count is due to the fact that the page has been inserted into the kernel’s page cache,
which counts once towards a usage.

Notice also that the 4th line shows that the entire text of ld.so has resident pages, and
those pages have high (10 or 11) usage counts. This reflects the fact that ld.so is used
by virtually all programs for mapping their shared libraries. The same goes for libc text
(the 12th line).

(The "..." characters are artificially inserted here to signify that the line continues
but has been omitted for brevity).

The /proc/[pid]/memmap entry will appear by enabling the kernel config option
CONFIG_MEMORY_ACCOUNTING.

/proc/[pid]/nodemap

The format of this entry is identical to /proc/[pid]/memmmap, except that, instead of
displaying the page usage count of resident pages, the entry displays the memory node ID
in which the page resides. For contiguous memory systems with a single node, the node
ID’s of all resident pages will read 0.

This entry is mostly used to verify the proper behavior of MTA enabled systems (see
MemoryTypeBasedAllocation).

The /proc/[pid]/nodemap entry will appear by enabling the kernel config option
CONFIG_MEMORY_ACCOUNTING.

 TheBazaar . Engineering . MemoryAccountingTools

 /proc/[pid]/nodemap 4

/proc/[pid]/statrm

This entry summarizes the information provided by /proc/[pid]/memmap, and combines it
with some of the information provided by /proc/[pid]/maps. As in /proc/[pid]/maps, it
displays one line for each VMA of the process. On each line, the following fields are
displayed:

virtual start address in hexadecimal (same as /proc/[pid]/maps)•
total number of pages in the region in decimal•
of the total number of pages in the region, the number that are resident•
of the resident pages, the number which are shared with other processes, i.e. which
have a usage count greater than one

•

of the resident pages, the number which are dirty (modified)•
permissions (same as /proc/[pid]/maps)•
file byte offset in hex (same as /proc/[pid]/maps)•
file name (same as /proc/[pid]/maps)•

A sample output, corresponding to the bash shell’s /proc/[pid]/maps and
/proc/[pid]/memmap displayed above, is:

00008000 133 115 115 0 r-xp 00000000 /bin/bash
00094000 6 6 0 6 rw-p 00084000 /bin/bash
0009a000 45 45 0 45 rwxp 00000000
40000000 22 22 22 0 r-xp 00000000 /lib/ld-2.3.2.so
40016000 1 1 0 1 rw-p 00000000
4001d000 2 2 0 2 rw-p 00015000 /lib/ld-2.3.2.so
4001f000 53 29 29 0 r-xp 00000000 /lib/libncurses.so.5.2
40057000 13 9 0 9 rw-p 00030000 /lib/libncurses.so.5.2
40064000 3 1 0 1 rw-p 00000000
40067000 2 2 2 0 r-xp 00000000 /lib/libdl-2.3.2.so
4006f000 3 2 0 2 rw-p 00000000 /lib/libdl-2.3.2.so
40072000 281 106 106 0 r-xp 00000000 /lib/libc-2.3.2.so
40192000 5 5 0 5 rw-p 00118000 /lib/libc-2.3.2.so
40197000 2 2 0 2 rw-p 00000000
40199000 9 5 5 0 r-xp 00000000 /lib/libnss_files-2.3.2.so
401a9000 1 1 0 1 rw-p 00008000 /lib/libnss_files-2.3.2.so
bfffb000 5 4 0 4 rwxp ffffc000

/proc/[pid]/statm

This is a standard entry that summarizes the information provided by /proc/[pid]/statrm.
It displays only 7 decimal numbers:

the total number of non-zero pte’s in the process memory•
the total number of resident pages in the process memory•
of the resident pages, the number which are shared with other processes, i.e. which
have a usage count greater than one

•

of the resident pages, the number which are from text regions•
of the resident pages, the number which are from library regions•
of the resident pages, the number which are from data (including stack) regions•
of the resident pages, the number which are dirty (modified)•

The second, third, and seventh numbers are a sum of the corresponding columns from
/proc/[pid]/statrm.

A sample output, corresponding to the bash shell’s /proc/[pid]/statrm displayed above, is:

357 357 279 121 0 236 78

 TheBazaar . Engineering . MemoryAccountingTools

 /proc/[pid]/statrm 5

Refer to the proc(5) man page (man 5 proc) for more information about /proc/[pid]/statm.

Acceptance Criteria

Verify that an accurate accounting can be made of the current and maximum memory
usage of a process, using the above /proc tools.

1.

Verify that the above tools can be used to accurately account for all memory pages
currently used by all running processes, taking into account which pages are shared
among processes and which are private.

2.

Verify that the above tools can be used to accurately account for all memory pages
currently reserved for kernel use.

3.

Use Cases

In this example, we will calculate how much resident memory is being used by all
currently running bash shells (this example was run on the OMAP1510 Innovator).

First, list all the loaded processes with ps ax, greping for "bash":

root@10.0.1.95:~# ps ax | grep bash
 102 ttyS0 S 0:00 -bash
 113 pts/0 S 0:00 -bash

Now let’s list the resident page counts:

root@10.0.1.95:~# cat /proc/102/statrm
00008000 133 115 115 0 r-xp 00000000 /bin/bash
00094000 6 6 0 6 rw-p 00084000 /bin/bash
0009a000 45 45 0 45 rwxp 00000000
40000000 22 22 22 0 r-xp 00000000 /lib/ld-2.3.2.so
40016000 1 1 0 1 rw-p 00000000
4001d000 2 2 0 2 rw-p 00015000 /lib/ld-2.3.2.so
4001f000 53 29 29 0 r-xp 00000000 /lib/libncurses.so.5.2
40057000 13 9 0 9 rw-p 00030000 /lib/libncurses.so.5.2
40064000 3 1 0 1 rw-p 00000000
40067000 2 2 2 0 r-xp 00000000 /lib/libdl-2.3.2.so
4006f000 3 2 0 2 rw-p 00000000 /lib/libdl-2.3.2.so
40072000 281 106 106 0 r-xp 00000000 /lib/libc-2.3.2.so
40192000 5 5 0 5 rw-p 00118000 /lib/libc-2.3.2.so
40197000 2 2 0 2 rw-p 00000000
40199000 9 5 5 0 r-xp 00000000 /lib/libnss_files-2.3.2.so
401a9000 1 1 0 1 rw-p 00008000 /lib/libnss_files-2.3.2.so
bfffb000 5 4 0 4 rwxp ffffc000
root@10.0.1.95:~# cat /proc/113/statrm
00008000 133 111 111 0 r-xp 00000000 /bin/bash
00094000 6 6 0 6 rw-p 00084000 /bin/bash
0009a000 40 40 0 40 rwxp 00000000
40000000 22 22 22 0 r-xp 00000000 /lib/ld-2.3.2.so
40016000 1 1 0 1 rw-p 00000000
4001d000 2 2 0 2 rw-p 00015000 /lib/ld-2.3.2.so
4001f000 53 27 27 0 r-xp 00000000 /lib/libncurses.so.5.2
40057000 13 9 0 9 rw-p 00030000 /lib/libncurses.so.5.2
40064000 3 1 0 1 rw-p 00000000
40067000 2 2 2 0 r-xp 00000000 /lib/libdl-2.3.2.so
4006f000 3 2 0 2 rw-p 00000000 /lib/libdl-2.3.2.so
40072000 281 104 104 0 r-xp 00000000 /lib/libc-2.3.2.so
40192000 5 5 0 5 rw-p 00118000 /lib/libc-2.3.2.so
40197000 2 2 0 2 rw-p 00000000
40199000 9 5 5 0 r-xp 00000000 /lib/libnss_files-2.3.2.so
401a9000 1 1 0 1 rw-p 00008000 /lib/libnss_files-2.3.2.so
bfffb000 5 4 0 4 rwxp ffffc000

 TheBazaar . Engineering . MemoryAccountingTools

 Acceptance Criteria 6

All the text regions are being shared between the two bash shells, which accounts for a
maximum of 133+22+53+2+281+9 = 500 pages. To calculate how many text pages are currently
resident, we take the maximum of the resident page count field from each shared text
region. For example, we see that there are 115 resident pages for the first bash code, but
only 111 for the second. So there are currently 115 resident pages for bash code.
Following this procedure for all the shared text regions, we see there are
115+22+29+2+106+5 = 279 resident text pages (out of a total of 500).

The remaining regions contain only private pages, and must be counted seperately between
the two bash shells. Out of a total of 6+45+1+2+13+3+3+5+2+1+5 = 86 pages for each shell,
6+45+1+2+9+1+2+5+2+1+4 = 78 pages are resident in the first shell, and
6+40+1+2+9+1+2+5+2+1+4 = 73 pages are resident in the second shell.

Putting it all together, out of a total of 500+86+86 = 672 pages that could be used by
both bash shells, currently 279+78+73 = 430 pages are resident.

Additional Information

Known Problems

There are no known problems.

----- Revision r1.4 - 09 Feb 2004 - 18:28 GMT - SteveLongerbeam

Copyright ' 2002-2004 by MontaVista Software. All material on this collaboration tool is the property of MontaVista Software.

 TheBazaar . Engineering . MemoryAccountingTools

 Additional Information 7

