

Case Study: Yocto / OpenEmbedded in All Scenarios OS

Yocto Project Summit, May 2021

FEELING GOOD

LIVING

Meet Philip.

thermostat headsets phones projector watches lights motion door lock doorbell alarm cameras

CONSUMERS

Complexity
Insecurity
Lack of privacy
Turned into products

DEVICE MAKERS/OEMs

Reinventing the wheel
Sub-optimal choices
Becoming Device Dealers
Cheap Disposable Devices
Monetize consumer's data

CONTENT CREATORS

Lack of choice
Lack of standards
Drive o.s. / cloud stickiness
Influence device makers
Help monetize consumer's data

	CPU type		MCU		CPU				
	Number of CPUs	1		2	2	4		8	
	Display	Headless	Display		Headless	Display			
	GPU Acceleration	Simple Graphics				Accelerated Graphics			
	Application Runtime Engine	Javascript / C-C++				Javascript /C-C++ /Java			
	Application Framework	GN, Jar,							
Applications	Application Framework	Phone, Maps, Location,							
	Applications	,,							
Distributed Functionalities	Discovery	Distributed Communications							
	Sensor	Distributed Sensors							
	Actuator	Actuator		Actuator	Actuator	Actuator			
	НМІ	HMI		HM		Dist. HMI		Dist. HMI	
	Distributed compute and storage	Distributed Compute and Storage						torage	
	Edge Al	Autonomous Agents				Autonomous Agents and Orchestrators			
	Communication Bosons and the	400			4000				
Device Performance	Communication Range - meters	10		100		1000			
	Energy Consumption	uWatts		mWatts	mWatts		Watts		
	Memory footprint	kB		MB		GB			

500

Things

Speakers, Earbud, Light Bulbs, Doorlocks, Appliances, Watches, Thermostats,...

100

1000

Gateway

Transparent GWs

Zephyr/LiteOS

100000

Mobile

Phones, Tables, In-car

Linux

50000

Brand

Device Type

Kernel

Processor speed - MIPS

OpenHarmony Device Brand Name

OpenHarmony Powered Devices

Our usage of Yocto/OE

Our usage of Yocto/OE: Build Setup

Our usage of Yocto/OE: Toolchain Selection

- musl
- Binary footprint
- Improvements on resource exhaustion
- Similar level of runtime performance (compared to glibc)

Our usage of Yocto/OE: Toolchain Selection

- clang/LLVM
 - Modern compiler frontend/backend
 - Support for emerging languages
 - Static analysis tools included
 - WIP:
 - dunfell support for meta-clang
 - Blacklist of unsupported packages

Our usage of Yocto/OE: CI

Our usage of Yocto/OE: Upstream Contribution

Problems We Ran Into

Problems We Ran Into: Newcomer Feedback

- Debugging is not easy
- Build system
- Build packages
- Layering system
- Build system is too flexible

Problems We Ran Into: meta-zephyr

west build tool

- 200+ machines
- Extra support for shield

Yocto

• 5 machines

Problems We Ran Into: BSP layers mix

Define primitives

- Configurable
- Subscribable

```
tail -n1 layer.conf
sh-5.1$ cat base-
              INSTALL append ...
                                 "${THISDIR}/${PN}:
 ILESEXTR
sh-5.1$ ca
                               ער בר ulstro)
  cat west
```

Problems We Ran Into: GN-based Projects

CVE's on Dunfell

- CVE checker in Yocto and reporting helps to keep track
- Huge thanks to Steve Sakoman
- Work in progress on our CI to run for our target images and machines
- CVE fixes important to
- upstream

Firmware Redistribution Rights

Open Source experienced lawyers within the dev team

LegalOps

- Real world example:
- Enabling a BSP caused the automatic inclusion of firmware files into the images
- Aim: good ootb experience Result: legal risk

SPDX Headers

- Headers have been added to scripts already
- Next step would be headers in the meta-data itself
- oe-core LICENSE file:
- "All metadata is MIT licensed unless otherwise stated. Source code
- included in tree for individual recipes (e.g. patches) are under
- the LICENSE stated in the associated recipe (.bb file) unless
- otherwise stated.
- License information for any other files is either explicitly stated
- or defaults to GPL version 2 only."
- Start with adding MIT license header to bb files
- Gradually adding license headers to patches

Future Plans

Cross-kernel OTA Story

Linux & RTOS images

A/B partition table for all devices

Orchestration system service

Read-only filesystem plus state and data

meta-liteos

Multiple kernel state:

- Linux based meta layers for Arm and Intel boards
- Meta-zephyr and meta-freertos for RTOS on MCU

- LiteOS as an additional RTOS kernel under discussion
- meta-liteos could be the result for hardware support and integration

Cross-kernel Testing Story

- Seeking a way to test across the multiple kernels
- Application Certification Test Suite, ACTS
 - A few thousand test cases
 - Linux Test Project
 - Libc testing
 - Filesystems
 - APIs

Summary

- Yocto / OpenEmbedded chosen as one of the core building blocks for All Scenarios OS
- Mixed bag of layers, kernel, IP compliance and more, but with a clear upstream policy
- Discussion on more SPDX headers in meta-data

Thank You!

Visit us: https://www.ostc-eu.org/

https://git.ostc-eu.org/

https://chat.ostc-eu.org/

