Using a JTAG in Linux [t
Driver Debugging

Supporting New Hardware n

Mike Anderson \
Chief Scientist

The PTR Group, Inc. l
http:/ /www.theptrgroup.com

04/16/2008 - Copyright © 2008 The PTR Group Inc.

CELF-2008-SVC-1

What We Will Talk About

#What are we trying to do?

#Hardware debuggers

#What is JTAG?

#How does it work?

#Board bring up

+#The Linux boot sequence

#Debugging the kernel and device drivers

CELF-2008-SVC-2 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

What are we trying to do?

#The board bring-up process is loaded
with potential gotchas

» Obtaining data sheets may be near
impossible

» The hardware may or may not be working

» The boot firmware may have restrictive
licensing issues

#There are two phases of device driver
development that we’ll need to address
» Getting the board to work at all
» Adding features for peripherals

CELF-2008-SVC-3 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Porting Linux

#Bringing Linux up on a new board will
require some knowledge of assembly
language for your processor

» There are several transitions from
assembly to “C" and back if we’re using
zlmages

#Debugging at this level will require the
use of JTAGs, or other hardware
assistance

» Never underestimate the power of an LED

CELF-2008-SvVC-4 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y >r=

Device Drivers in Linux

#Linux has several driver types
» Character, block, network, etc.

#Linux uses a formal driver model

» Drivers present a common API such as
open(), release(), read(), write(), etc.

#User-mode device drivers are also
possible
» Via /dev/mem, /dev/ioports, etc.
» Easier to debug using standard GDB

CELF-2008-SVC-5 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

v4

Statically Linked - Dynamically Loaded

#The typical kernel-mode driver can be
statically linked into the kernel at kernel
build time

» Must be GPL
» Initialized in start_kernel() sequence

#Dynamically-loaded drivers, a.k.a. kernel
modules are loaded after the kernel is
booted and init is running

» Can be loaded from initramfs/initrd
» Can have proprietary licenses

CELF-2008-SVC-6 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Driver Initialization Sequence

#Drivers must register themselves with the
kernel

» register_chrdev(), register_blkdev(),
register_netdev(), etc.

+#For block and character drivers you’ll
need to assign major/minor numbers
» Can be done statically or dynamically

» Coordinate with
<linux>/Documentation/devices.txt

#You’'ll need to create device nodes as well
» Statically or via UDEV

CELF-2008-SVC-7 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y >r=

Loadable Module Example

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>

#define MODULE NAME “celf"
int init celf init module(void) {

printk (“celf init module() called, ");
return 0;

void exit celf cleanup module(void) ({
printk (“celf cleanup module() called\n");

module init(celf init module) ;
module exit(celf cleanup module);

CELF-2008-SVC-8 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

Old School Driver Registration

#Kernel is made aware of a character
device driver when the driver
registers itself

» Typically in the __init function

#Registration makes the association
between the major number and
device driver

int register chrdev(unsigned int major,
const char *name, struct file operations
*fops)

CELF-2008-SVC-9 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

Old School Driver Registration #2

+#Likewise, when a device driver
removes itself from the system,
it should unregister itself from
the kernel to free up that major
number

#Typically in the __exit function:

int unregister chrdev(unsigned
int major, const char *name) ;

CELF-2008-SVC-10 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y =

New-School Driver Registration

#I1f you need to get beyond the 256 major
limit, you’ll need to use a different
approach

» This uses a different API, dev_t, cdev
structures and a much more involved
registration approach

#All of this is beyond scope for the current
discussion, however

CELF-2008-SVC-11 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

-

1

Giving Your Driver Something to do

+# Character device driver exports services in
file_operations structure

» There are 26 supported operations in the 2.6 kernel
- Up from 17 in the 2.4.kernel

+# You only supply those calls that make sense for your
device

+# You can explicitly return error codes for unsupported

functions or have the system return the default
ENOTSUPP error

+# Typically, the file_operations structure is statically
initialized
» Using C99 tagged initializer format

CELF-2008-SVC-12 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l
A

struct file_operations #1 of 2

struct file operations {
struct module *owner;
loff t (*llseek) (struct file *, loff t, int);
ssize t (*read) (struct file *, char _ user *, size t, loff t ¥*);
ssize t (*aio_read) (struct kiocb *, char _ user *, size t, loff t);
ssize t (*write) (struct file *, const char _ user *, size t,
loff t *);
ssize t (*aio write) (struct kiocb *, const char _ user ¥*,
size t, loff t);

int (*readdir) (struct file *, void *, filldir t);
unsigned int (*poll) (struct file *, struct poll table struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned 1long) ;
long (*unlocked joctl) (struct file *, unsigned int, unsigned long);
long (*compat ioctl) (struct file *, unsigned int, unsigned long) ;
int (*mmap) (struct file *, struct vm area struct ¥*);
int (*open) (struct inode *, struct file *);
int (*£flush) (struct file *);

CELF-2008-SVC-13 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ K = T ?
A

struct file_operations #2 of 2

int (*release) (struct inode *, struct file *);

int (*£sync) (struct file *, struct dentry *, int datasync);

int (*aio fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file lock *);

ssize t (*readv) (struct file *, const struct iovec *, unsigned long,
loff t *);

ssize t (*writev) (struct file *, const struct iovec *, unsigned long,
loff t *);

ssize t (*sendfile) (struct file *, loff t *, size t, read actor t, void *);
ssize t (*sendpage) (struct file *, struct page *, int, size t,

loff t *, int);
unsigned long (*get unmapped area) (struct file *, unsigned long,

unsigned long, unsigned long, unsigned 1long) ;

int (*check flags) (int);
int (*dir notify) (struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file lock ¥*);

CELF-2008-SVC-14 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ K = T ?
A

Which File Operations do | Need?

+# Typically, a driver will implement:

- open()
- release()
- a.k.a., the user-space close()

- read()
- write()

- ioctl()
+# Additional features like mmap(), poll(), fasync(), and
flush() are nice to haves
» You can add them at any time during development
Some methods like llseek() and readv()/writev() may not
apply to your device
» You decide what to support and errors to return

CELF-2008-SVC-15 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y >r=

Initializing the file_operations

#C99 tagged initialization of the structures
allows you to initialize the fields by name

» No worry about the structure layout (which may
change between kernel revisions)

#Un-initialized function entries in the structure
shown below will be initialized to NULL

struct file operations fops = {
.read = my read,
.write = my write,
.1octl = my ioctl,
.open = my open,
.release = my release

};

CELF-2008-SVC-16 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Debugging Device Drivers

+#Statically-linked device drivers are notoriously
difficult to debug

» An error can cause a panic or oops before you can
even get printk() to work

» These will typically require a JTAG to debug them
easily
#Dynamically-linked drivers are marginally easier
because you can get more debugging
infrastructure into place before loading them

» The use of read_proc()/write_proc() functions and
printk() are typical

» JTAGs can help here too

CELF-2008-SVC-17 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Hardware Debugging Tools

#The traditional hardware debug tool
was the In-Circuit Emulator (ICE)

» A device that plugged into the CPU
socket and emulated the CPU itself

#These were rather expensive
» $30K+ for the good ones

#Today, most devices that call
themselves an ICE are actually JTAGs

CELF-2008-SVC-18 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Why the Traditional ICE has Faded Away

#The biggest problem faced by the
ICE concept was the increasing pin
counts of processors

» E.g., 939 pins for the Athlon-64

#Each pin required a wire to the ICE

» Each wire started to become an antenna
as frequencies increased

+#Processors also started to move to
Ball Grid Array (BGA) packages

» No way to get to the pins in the center
of the part because the part is soldered
to the motherboard

CELF-2008-SVC-19 04/16/2008 - Copyright © 2008 The PTR Group Inc.

Enter the JTAG Port

#The Joint Test Action Group
(JTAGQ) is the name
associated with the IEEE
1149.1 standard entitled
Standard Test Access Port
and Boundary-Scan
Architecture

» Originally introduced in 1990

as a means to test printed
circuit boards

» An alternative to the bed of
nails

CELF-2008-SVC-20 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

How JTAG Works

+#JTAG is a boundary-scan device that
allows the developer to sample the values
of lines on the device

» Allows you to change those values as well

#JTAG is built to allow chaining of multiple
devices

» Works for multi-core processors, too

CELF-2008-SVC-21 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

JTAG Details

+#JTAG is a simple serial protocol

#Configuration is done by manipulating the
state machine of the device via the TMS

line

CELF-2008-SVC-22

1. TDI (Test Data In)

2. TDO (Test Data Qut)

3. TCK (Test Clock)

4, TMS (Test Mode Select)
5. TRST (Test ReSeT) optional.

TMS

=
TCK
(-
— TMS TMS I TMS
TCK TCK TCK
DEVICE 1 DEVICE 2 DEVICE 3
TDI
C_>—TDI TDO TDI TDO TDI TDO
TDO
1
04/16/2008 - Copyright © 2008 The PTR Group Inc. K P

g

T

JTAG-Aware Processors

#Most embedded processors today support JTAG
or one of its relatives like BDM

» E.g., ARM/XScale, PPC, MIPS
#Even the x86 has a JTAG port although it is
rarely wired out

» Grandma can barely send e-mail, let alone know
what to do with a JTAG port

#Some processors like MIPS come in different
versions

» Some with JTAG ports for development, some without
in order to save $$9%

CELF-2008-SVC-23 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

JTAG Vendors

#Several different vendors sell JTAG port
interface hardware

» JTAG is also referred to as On-Chip Debugging (OCD)

#Here are a few of the vendors:
» Wind River Systems (http://www.windriver.com)
» Abatron AG (http://www.abatron.ch)
» American Arium (http://www.arium.com)
» Mentor Graphics (http://www.epitools.com)

#Some vendors do certain processors better than
others

» MIPS will usually have a more custom EJTAG interface

CELF-2008-SVC-24 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

JTAG Connections

#The maximum speed of JTAG is 100 MHz

» A ribbon cable is usually sufficient to connect
to the target

#Connection to the development host is

accomplished via '
» Parallel port
» USB |

» Serial port
» Ethernet

CELF-2008-SVC-25 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

JTAG User Interface

#Some JTAG interfaces use
a GDB-style software

interface R So
» Any GDB-aware frontend I’
will work B
#Others have Eclipse plug- = .
ins to access the JTAGvia = = =
an IDE N S

#Some still use a
command line interface

CELF-2008-SVC-26 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

What can you do with a JTAG?

Typical JTAG usage includes reflashing boot
firmware

» Even the really cheap JTAG units can do this

#However, it is in the use as a debugging aid that
JTAG comes into its own

» You can set hardware or software breakpoints and

de

» So
de

oug in source code
nhisticated breakpoint strategies and multi-core

ougging usually require the more expensive units

+#JTAG units can also be used to exercise the
address bus and peripherals

» This is what JTAG was originally designed for

CELF-2008-SVC-27

04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Hardware Configuration Files

#Most JTAG units require you to describe the
hardware registers in a configuration file

» This is also how you describe what processor
architecture you are using

#All of that information about register maps that

you collected earlier now goes into the
configuration file

#Unfortunately, there is no standard format for
these configuration files

» Each JTAG vendor uses different syntax

CELF-2008-SVC-28

04/16/2008 - Copyright © 2008 The PTR Group Inc. \ K = T ?
A

Example Configuration Files

#Many JTAG units split the configuration
files into a CPU register file and a board
configuration file

; SDRAM Controller (SDRAMC)

sdramc_mr OxFFFFFF90 32 ; SDRAMC Mode Register

sdramc_tr OxFFFFFF94 32 ;SDRAMC Refresh Timer Register
sdramc_cr OxFFFFFF98 32 ; SDRAMC Configuration Register
sdramc_srr OxFFFFFFOC 32 ; SDRAMC Self Refresh Register
sdramc_lpr OxFFFFFFAO 32 ; SDRAMC Low Power Register
sdramc_ier OxFFFFFFA4 32 ;SDRAMC Interrupt Enable Register

; bdiGDB configuration file for ATI91RMOS200-DK

[INIT]
WREG
W32
Wr32
Wr32
Wr32
Wr132

JWM32

JWM32
Wr132
W32
Wr32
DELAY
Wr132

CELF-2008-SVC-29

CPSR
OxFFFFFFO0O
OxFFFFFEFC20

Init Flash
OxFFFFFF10
OxFFFFFF50
OxFFFFFF54
OxFFFFFFO04
OxFFFFFFOS8
OxFFFFFF64
OxFFFFFF70

Init Clocks
OxFFFFFC28
100

OxFFFFFC2C

04/16/2008 - Copyright © 2008 The PTR Group Inc.

0x000000D3
Ox00000001
Ox0000FFO1

O0x00000000
Ox00000000
Ox00000000
O0x00000000
Ox00000000
Ox00000000
Ox00003284

Ox20263E04

Ox10483E0E

;rselect superwvisor mode
;Cancel reset remapping
;s PMC_ MOR Enable main oscillatox , OSCOUNT = OxFF

;MC PUIATO]

;MC_PUP

;MC_ PUER: Memory controller protection unit disable
FJMC_ ASR

;MC AASR

;EBI CFGR

;SMCZ_ CSR[O]: 16bit, 2 TDF, 4 WS

;PLILAR: 179,712000 MH=z for PCK

;PLLBR: 48,054857 MHz (dividerxr by 2 foxr USB)

Source: Abatron

=T

Developing the Configuration File

+# The JTAG vendor will likely already have a register file
for the processor

» ARM920, PPC8241, etc.

+# Your task will be to develop the board configuration file

» There may be a configuration file for the reference board that
you can use as a starting point

+# The configuration file is essentially a script of
commands to initialize the target board
» You keep working on it until you can initialize memory

» Once memory is on-line, you should then be able to write
values into memory via the JTAG that can be read back

» Then, enhance the configuration to initialize other peripherals

CELF-2008-SVC-30 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l
A

Linux-Aware JTAGS

#There are several rather tricky transitions
during the Linux booting process

» Transitioning from flash to RAM

» Transitioning from physical addresses to
kernel virtual addresses

» These transitions require the use of hardware
breakpoints

+#Make sure that your JTAG is “Linux aware”

» It must understand Linux’s use of the MMU to
be of much use for driver debugging

CELF-2008-SVC-31 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

The Linux Boot Sequence

+# Like the boot firmware, the Linux kernel starts in
assembly language

» Sets up the caches, initializes some MMU page table entries,
configures a “C” stack and jumps to a C entry point called
start_kernel() (init/main.c)

+# start_kernel() is then responsible for:
» Architecture and machine-specific hardware initialization
» Initializing virtual memory
» Starting the system clock tick
» Initializing kernel subsystems and device drivers
+# Finally, a system console is started and the init process
is created

» The init process (PID 1) is then the start of all user-space
processing

CELF-2008-SVC-32 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

JTAG and Early Kernel Debug

+# An odd thing happens when the MMU is enabled

» All of the physical addresses suddenly get translated into virtual
addresses

+# The kernel’s debug symbols are all built assuming a
virtual address space

» You’ll need to turn debugging symbols on in the kernel
+# Consequently, while you can step through the early
code by using a hardware breakpoint address, software

breakpoint on symbols will only work after the MMU is
enabled

» Fortunately, this happens fairly early in the kernel initialization
+# You can typically tell the JTAG to step so many
instructions and then stop again

» Step past the MMU initialization, stop and then set additional
breakpoints

CELF-2008-SVC-33 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Configure Kernel for Debugging

#Enable debugging info and rebuild the kernel

Linux Kernel v2.6.14.7-selinux]l Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < >

] pinlock debugging

] leep-inside-spinlock checking

] object debugging
5] Compile the kernel with debug info

] ebug Filesystem

] GDB: kernel debugging with remote gdb
*] erbose user fault messages

] ait queue debugging
[*] erbose kernel error messages
[*] ernel low-level debugging functions
[*] ernel low-level debugging via EmbeddedICE DCC channel

i
i
i
[
[
i
i
i

< Exit > < Help >

CELF-2008-SVC-34 04/16/2008 - Copyright © 2008 The PTR Group Inc.

Loading Symbols into the JTAG Ul

+# Depending on the JTAG Ul, you may simply have to
load the kernel’s vmlinux image to be able to access
the symbols by name

» The techniques for doing this vary by JTAG vendor

+# Attach the JTAG to the hardware
» Reset the board via JTAG and hold in reset
» Set H/W breakpoint using the JTAG
» Load the vmlinux via the JTAG (this loads the symbols)
» Command the JTAG to tell the hardware to “go”
+# Once you encounter the hardware breakpoint, you can
step in assembly until the MMU is enabled
» The MMU will translate physical addresses to virtual addresses
» Once virtual addressing is on, set breakpoints as normal

CELF-2008-SVC-35 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

Using JTAG to Dump printk Buffer

#If you kernel hangs right after displaying
‘Uncompressing Kernel Image ... OK”
message...

» You probably have printk() output, but the
serial console isn’t initialized yet

#We can dump the printk buffer using the
JTAG!

» Look in the kernel’s System.map file for
something like “__log_buf”

$ grep _ log buf /boot/System.map
c0445980 b log buf

CELF-2008-SVC-36 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Dumping printk Buffer #2

+#The address of the buffer is a translated kernel
address

» Strip off the OxC0O000000 portion of the address to
get (typically) the physical address on processors like
the X86

» i.e., 0xc0445980 would typically be at physical
address 0x445980

» You must understand your processor to do the
translations correctly

#Now, use the JTAG to dump that address

» Raw printk output, but you can get an idea of what it
was doing when it crashed

» Data is still there even after reset (but not power-off)

CELF-2008-SVC-37 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

GDB-Aware JTAGS

+#If the JTAG is GDB-aware, then you will be
able to control it using normal GDB
commands

» Attach to the JTAG via “target remote xx"
command where “xx” is via Ethernet, serial or
other connection between your JTAG and the
host

#Use the GDB "mon” command to pass
commands directly to the JTAG

CELF-2008-SVC-38 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

DDD GUI Front-End Example

- n e m 2l
% V O r O File. Edit Wiew Program Eommands Status Source gat'a Help |
3 ¥ - - L * - 5 - . . T ~' oo,

0: | maiin ;B B D @ 2 e A A 5T ® e

Lookup Finde Bresk Watch Print Displ Plat Shoul Rotfies Eet UndiEn

I A
I W I :/ Tinusfarch/armfkernel finit_task.c

#include <1inux/mm.h>
#include <linux/module.h> Irterrupt

- - #include <linuz/fs.h> sten | Stenl
#include <1inux/sched.h> EHL StER
finclude <linufinit.he |

#include <linux/init_task.h>

=

i

i
=
=

Mext
finclude <1inu=/mgueus. h: Until | Fnish
- #include <asmfuaccess.h Corit | Kl
O r e l I I n #include <asm/pgtable.h> Up | Down
static struct fs_struct injt_fs = INIT_F5; Undo | Fedo
static struct files_struct init_files = IMIT_FILES; -
static struct signal_struct init_signals = INIT_SIGNALS(init_signals); Edit | Make

static struct sighand_struct init_sighand = INIT_SICHANMDCinit_sighandy;

“- struct mm_struct init_mm = INIT_MMCinit_rmm);
% e I I at t a (t O EXPORT_SYMBOL (init_mm);
- Initial thread structure.
sing “ta rget
u g the Tinker maps this in the .text segment right after head.s,
and making head.S ensure the proper alignment.
” XThe things we do for performance..
b
r(I I I Ot((O I I I I I I a I l union thread_union init_thread_union

__attribute_ {{_section__(".init.task"3)) =

—
*

We need to make sure that this is B192-hwte aligned due to the
way process stacks are handled, This is done by making sure

E R OE R E X F B

GHU DDD 3.3.11 (i386—suse—linux—gnul, by Dorothea Litkehaus and Andreas Zeller.
Copyright © 1995-1999 Technische Universitdt Braunschweig, Germany.

Copyright @ 1993-2001 Universitdt Passau, Germany.

Copyright @ 2001 Universitét des Saarlandes, Germany.

Eogggight © 2001-2004 Free Software Foundation, Inc.

9

|3 E— 1

A Welcome to DDD 3.53.11 "Rhubarh” (i386-suse-linus-gnu)

CELF-2008-SVC-39 04/16/2008 - Copyright © 2008 The PTR Group Inc. P TR

Debugging Device Drivers

#Statically linked driver symbols are
already built into the kernel’s symbol
table

» Simply set break points on the driver
methods themselves

#Dynamically loaded drivers require
additional steps

» We need to find the addresses used by the
driver

#The next few charts assume a GDB-aware
JTAG

CELF-2008-SVC-40 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Debugging Loadable Modules

+#In order to debug a loaded module, we need to
tell the debugger where the module is in
memory

» The module’s information is not in the vmlinux
image because that shows only statically linked
drivers

#How we proceed depends on where we need to
debug

» If we need to debug the __init code, we need to set a
breakpoint in the sys_init_module() function

CELF-2008-SVC-41 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Debugging Loadable Modules #2

#We’ll need to breakpoint just before the control
is transferred to the module’s __init

» Somewhere around line 1907 of module.c

#0Once the breakpoint is encountered, we can
walk the module address list to find the
assigned address for the module

» We then use the add-symbol-file GDB command to

add the debug symbols for the driver at the address
for the loaded module

»E.g.,

add-symbol-file ./mydriver.ko Ox<addr> -e .init.text

CELF-2008-SVC-42 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Debugging Loadable Modules #3

#Now, you can set breakpoints via the GDB
commands to the JTAG and tell the
system to continue until a breakpoint in
encountered

CELF-2008-SVC-43 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

What if the __init is Working?

#If you do not need to debug the __init
code, then load the driver and look in the
/sys/modules/<module
name>/sections/.text for the address of
the text segment

#Next, use the add-symbol-file command
again, but use the .text address and omit
the “-e .init.text”

» Set your breakpoints and continue

CELF-2008-SVC-44 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

User-Space Addresses

#Within Linux, each user-space application
occupy the same virtual address space

» The address spaces are physically different,
but the addresses overlap

0x80000000

0x1000000

CELF-2008-SVC-45 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

TAG Confusion

#JTAGs normally run in what is called halt mode
debugging
» The entire processor is stopped when a given
breakpoint address is accessed

#This works reasonably well in kernel space
» Only one kernel address space

#While it is possible to debug user applications
with the JTAG, the JTAG can get confused by
seeing the same virtual address in different
applications due to context switches

» This requires run mode support for the JTAG

CELF-2008-SVC-46 04/16/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Run-Mode Support

+# Using a debugging agent in user space and register
support like the ARM’s Debug Communications Channel
(DCC) we can associate a virtual address to a particular
context

» This allows the breakpoint to only stop the one application
instead of any application that matches the address

+# Only a few JTAGs support this run mode debugging
mechanism

» Otherwise, we are left with normal GDB process trace (ptrace)
debugging control via an application like gdbserver

+# Naturally, GDB already does a reasonable job for user-
space debugging

» The need to use JTAG for user-space debug is rare

CELF-2008-SVC-47 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

Summary

+# Hardware debuggers such as JTAG are invaluable for
exercising new hardware

» They let us test address lines and registers
+# Once we can configure the board via the JTAG, we then
take that info and use it to port the boot firmware

» We can usually burn the boot firmware into flash via the JTAG as
well

Once the boot firmware is loading Linux, the JTAG can
then help again in early kernel debugging and device
driver debugging

+# Don’t start your next bring—up project without one!
+# Demo time...

CELF-2008-SVC-48 04/16/2008 - Copyright © 2008 The PTR Group Inc. \ l = T?
A

