Difference between revisions of "BeagleBoardUbuntu"

From eLinux.org
Jump to: navigation, search
m (SGX Video Acceleration: v3.6.x branch)
m (Copy edited.)
Line 5: Line 5:
 
''(For BeagleBoardAngstrom, click [[BeagleBoardAngstrom|here]].)''
 
''(For BeagleBoardAngstrom, click [[BeagleBoardAngstrom|here]].)''
  
This page is about running a (ARM [http://wiki.debian.org/ArmEabiPort EABI]) [http://www.ubuntu.com/ Ubuntu] distribution at [[BeagleBoard]]. BeagleBoard will boot the (ARM EABI) Ubuntu distribution from [[BeagleBoard#MMC.2FSD_boot|SD card]]. Since much of this page is generic, it has also be extended to help support devices such as the [[PandaBoard]] and [[BeagleBone]].
+
This page is about running a distribution (ARM [http://wiki.debian.org/ArmEabiPort EABI]) [http://www.ubuntu.com/ Ubuntu] at [[BeagleBoard]]. BeagleBoard will boot the (ARM EABI) Ubuntu distribution from the [[BeagleBoard#MMC.2FSD_boot|SD card]]. Since much of this page is generic, it has also be extended to help support devices such as the [[PandaBoard]] and [[BeagleBone]].
  
* For the best experience, make sure you have an LCD/HDMI monitor attached to the BeagleBoard's HDMI port, 2GB/4GB/8GB SD card, and a known good usb2.0 hub with mouse and keyboard.
+
* For the best experience, make sure you have an LCD/HDMI monitor attached to the BeagleBoard's HDMI port, 2 GB/4 GB/8 GB SD card, and a known good USB 2.0 hub with mouse and keyboard.
  
 
= Help =
 
= Help =
Line 15: Line 15:
 
*Kernel related help:
 
*Kernel related help:
 
** [http://groups.google.com/group/beagleboard Email Beagleboard user group] *Recommended method
 
** [http://groups.google.com/group/beagleboard Email Beagleboard user group] *Recommended method
** ''#beagle'': Beagle irc on freenode, accessible also by [http://beagleboard.org/discuss web interface] ([http://www.beagleboard.org/irclogs/index.php logs])
+
** ''#beagle'': Beagle IRC on Freenode, accessible also by [http://beagleboard.org/discuss web interface] ([http://www.beagleboard.org/irclogs/index.php logs])
 
** Kernel Tree's
 
** Kernel Tree's
*** [https://github.com/RobertCNelson/stable-kernel Stable Kernel 3.2.x src]
+
*** [https://github.com/RobertCNelson/stable-kernel Stable Kernel 3.2.x source code]
*** [https://github.com/RobertCNelson/linux-dev Development Kernel src]
+
*** [https://github.com/RobertCNelson/linux-dev Development Kernel source code]
  
 
*Ubuntu related help:
 
*Ubuntu related help:
** ''#ubuntu-arm'': Ubuntu's arm irc on freenode ([http://irclogs.ubuntu.com/ logs] -> year -> month -> day -> #ubuntu-arm.html)
+
** ''#ubuntu-arm'': Ubuntu's ARM IRC on Freenode ([http://irclogs.ubuntu.com/ logs] -> year -> month -> day -> #ubuntu-arm.html)
  
 
*When asking for help, please provide some debugging information:
 
*When asking for help, please provide some debugging information:
Line 32: Line 32:
  
 
Angstrom's X-loader/MLO & U-Boot
 
Angstrom's X-loader/MLO & U-Boot
* All Old Ax, Bx, Cx Boards are required to upgrade to atleast these MLO and U-Boot versions.
+
* All old Ax, Bx, and Cx boards are required to upgrade to at least these MLO and U-Boot versions.
 
* XM Boards have no NAND, so u-boot.img is always required on the first partition
 
* XM Boards have no NAND, so u-boot.img is always required on the first partition
 
* Directions: [http://elinux.org/BeagleBoardUbuntu#Upgrade_X-loader_and_U-boot Upgrade X-loader and U-Boot]
 
* Directions: [http://elinux.org/BeagleBoardUbuntu#Upgrade_X-loader_and_U-boot Upgrade X-loader and U-Boot]
Line 57: Line 57:
 
== Canonical/Ubuntu Images ==
 
== Canonical/Ubuntu Images ==
 
Support:
 
Support:
''#ubuntu-arm'': Ubuntu's arm irc on freenode ([http://irclogs.ubuntu.com/ logs] -> year -> month -> day -> #ubuntu-arm.html)
+
''#ubuntu-arm'': Ubuntu's ARM IRC on Freenode ([http://irclogs.ubuntu.com/ logs] -> year -> month -> day -> #ubuntu-arm.html)
  
 
Canonical only supports certain boards with images, at this moment.
 
Canonical only supports certain boards with images, at this moment.
Line 66: Line 66:
 
==Demo Image==
 
==Demo Image==
  
* These Demonstration Images contain a custom Mainline based kernel with experimental enhancements to the boards supported. They are usually updated about once a month, as new features/enhancements get added by the community. Currently, this image ships with two kernel's "x" which is for mainline omap3+ devices (BeagleBoard/PandaBoard) and the "psp" which is for specifically the BeagleBone, as much of the kernel support for this device is currently in a TI git kernel tree on [http://arago-project.org arago-project]. The kernel is stress tested by a farm of Panda/Beagle's running 24/7 under a heavy load (building gcc trunk/mainline kernel).
+
* These demonstration images contain a custom Mainline based kernel with experimental enhancements to the boards supported. They are usually updated about once a month, as new features/enhancements get added by the community. Currently, this image ships with two kernel's "x" which is for mainline omap3+ devices (BeagleBoard/PandaBoard) and the "psp" which is for specifically the BeagleBone, as much of the kernel support for this device is currently in a TI Git kernel tree on [http://arago-project.org arago-project]. The kernel is stress tested by a farm of Panda/Beagle's running 24/7 under a heavy load (building gcc trunk/mainline kernel).
  
 
* '''Advanced Users only''': Beagle/Panda Kernel source, used in these demo images: https://github.com/RobertCNelson/stable-kernel
 
* '''Advanced Users only''': Beagle/Panda Kernel source, used in these demo images: https://github.com/RobertCNelson/stable-kernel
Line 115: Line 115:
 
  wget http://ynezz.ibawizard.net/beagleboard/precise/ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  wget http://ynezz.ibawizard.net/beagleboard/precise/ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
  
Verify Image with:  
+
Verify image with:  
 
  md5sum ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  md5sum ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  6742f2edfbd4bebacf532ed5966e7765  ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  6742f2edfbd4bebacf532ed5966e7765  ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
  
Unpack Image:
+
Unpack image:
 
  tar xJf ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  tar xJf ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
 
  cd ubuntu-12.04-r7-minimal-armhf-2012-09-27
 
  cd ubuntu-12.04-r7-minimal-armhf-2012-09-27
Line 139: Line 139:
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
  
Install Image:
+
Install image:
  
Quick Install script for "board"
+
Quick install script for "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
  
"board" Options:  
+
"board" options:  
 
*BeagleBoard Ax/Bx - beagle_bx
 
*BeagleBoard Ax/Bx - beagle_bx
 
*BeagleBoard Cx    - beagle_cx
 
*BeagleBoard Cx    - beagle_cx
Line 152: Line 152:
 
*PandaBoard ES - panda_es
 
*PandaBoard ES - panda_es
  
So For the BeagleBoard xM:
+
So for the BeagleBoard xM:
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  
Line 162: Line 162:
 
** --svideo-pal <use pal over dvi for video)
 
** --svideo-pal <use pal over dvi for video)
  
You should now be able to unmount the SD card from you PC, insert into your Board, reboot and have the OS loaded.
+
You should now be able to unmount the SD card from you PC, insert into your board, reboot and have the OS loaded.
  
 
For a basic '''framebuffer''' driven desktop environment: (make sure network is setup):
 
For a basic '''framebuffer''' driven desktop environment: (make sure network is setup):
Line 227: Line 227:
 
You should see something like  
 
You should see something like  
  
  Are you sure? I Don't see [/dev/idontknow], here is what I do see...
+
  Are you sure? I don't see [/dev/idontknow], here is what I do see...
 
   
 
   
 
  fdisk -l:
 
  fdisk -l:
Line 238: Line 238:
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
  
Install Image:
+
Install image:
  
Quick Install script for "board"
+
Quick install script for "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
  
Line 251: Line 251:
 
*PandaBoard ES - panda_es
 
*PandaBoard ES - panda_es
  
So For the BeagleBoard xM:
+
So for the BeagleBoard xM:
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  
Line 263: Line 263:
 
You should now be able to unmount the SD card from you PC, insert into your Board, reboot and have OS loaded.
 
You should now be able to unmount the SD card from you PC, insert into your Board, reboot and have OS loaded.
  
For a full lxde based gui run this on your beagle (make sure network is setup):
+
For a full lxde based GUI run this on your BeagleBoard (make sure network is setup):
 
  Ethernet: "sudo ifconfig -a" and "sudo dhclient usb1" or "sudo dhclient eth0"
 
  Ethernet: "sudo ifconfig -a" and "sudo dhclient usb1" or "sudo dhclient eth0"
 
  Wireless: http://elinux.org/BeagleBoardUbuntu#Wifi_Networking_.28command_line.29
 
  Wireless: http://elinux.org/BeagleBoardUbuntu#Wifi_Networking_.28command_line.29
Line 272: Line 272:
 
Advanced: Build Image:
 
Advanced: Build Image:
  
Built with a fork of project-rootstock (ARM native mode, run directly on beagleboard), using a script from omap-image-builder:
+
Built with a fork of project-rootstock (ARM native mode, run directly on BeagleBoard), using a script from omap-image-builder:
  
 
  git clone git://github.com/RobertCNelson/omap-image-builder.git
 
  git clone git://github.com/RobertCNelson/omap-image-builder.git
Line 310: Line 310:
 
  wget http://ynezz.ibawizard.net/beagleboard/quantal/ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  wget http://ynezz.ibawizard.net/beagleboard/quantal/ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
  
Verify Image with:  
+
Verify image with:  
 
  md5sum ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  md5sum ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  cb1a79156807c29475fff28c3f9af155  ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  cb1a79156807c29475fff28c3f9af155  ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
  
Unpack Image:
+
Unpack image:
 
  tar xJf ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  tar xJf ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
 
  cd ubuntu-quantal-beta2-minimal-armhf-2012-09-27
 
  cd ubuntu-quantal-beta2-minimal-armhf-2012-09-27
Line 323: Line 323:
 
You should see something like  
 
You should see something like  
  
  Are you sure? I Don't see [/dev/idontknow], here is what I do see...
+
  Are you sure? I don't see [/dev/idontknow], here is what I do see...
 
   
 
   
 
  fdisk -l:
 
  fdisk -l:
Line 334: Line 334:
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
 
* In this example, we can see via mount, '''/dev/sda1''' is the x86 rootfs, therefore '''/dev/mmcblk0''' is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...
  
Install Image:
+
Install image:
  
Quick Install script for "board"
+
Quick install script for "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"
  
"board" Options:  
+
"board" options:  
 
*BeagleBoard Ax/Bx - beagle_bx
 
*BeagleBoard Ax/Bx - beagle_bx
 
*BeagleBoard Cx    - beagle_cx
 
*BeagleBoard Cx    - beagle_cx
Line 347: Line 347:
 
*PandaBoard ES - panda_es
 
*PandaBoard ES - panda_es
  
So For the BeagleBoard xM:
+
So for the BeagleBoard xM:
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
 
  sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  
Line 368: Line 368:
 
Advanced: Build Image:
 
Advanced: Build Image:
  
Built with a fork of project-rootstock (ARM native mode, run directly on beagleboard), using a script from omap-image-builder:
+
Built with a fork of project-rootstock (ARM native mode, run directly on BeagleBoard), using a script from omap-image-builder:
  
 
  git clone git://github.com/RobertCNelson/omap-image-builder.git
 
  git clone git://github.com/RobertCNelson/omap-image-builder.git
Line 378: Line 378:
 
= Method 2: Use the NetInstall method=
 
= Method 2: Use the NetInstall method=
  
You will need a 1GB/2GB SD card or greater.
+
You will need a 1&nbsp;GB/2&nbsp;GB SD card or greater.
  Standard System : ~700MB
+
  Standard system : ~700&nbsp;MB
  
 
== Ubuntu 12.04 (Precise) ==
 
== Ubuntu 12.04 (Precise) ==
Line 397: Line 397:
 
*PandaBoard ES - panda_es
 
*PandaBoard ES - panda_es
  
So For the BeagleBoard xM:
+
So for the BeagleBoard xM:
 
  sudo ./mk_mmc.sh --mmc /dev/sdX --uboot beagle_xm --distro precise-armhf
 
  sudo ./mk_mmc.sh --mmc /dev/sdX --uboot beagle_xm --distro precise-armhf
  
Line 406: Line 406:
 
**--serial-mode : debian-installer uses Serial Port
 
**--serial-mode : debian-installer uses Serial Port
  
Place SD card into Beagle and boot:
+
Place SD card into BeagleBoard and boot:
  
 
Configure the network:
 
Configure the network:
 
  usb0: USB net <- (usually the OTG port)
 
  usb0: USB net <- (usually the OTG port)
  eth0: USB net <- (usually the smsc95xx adapter on the beagle and panda)
+
  eth0: USB net <- (usually the smsc95xx adapter on the BeagleBoard and PandaBoard)
  wlan0: Wifi <- Your usb-wifi device..  
+
  wlan0: Wifi <- Your USDB-Wi-Fi device..  
  
 
Troubshooting: If boot fails..
 
Troubshooting: If boot fails..
Line 432: Line 432:
  
 
== Partition SD Card ==
 
== Partition SD Card ==
You will need a 1GB SD card or greater.
+
You will need a 1&nbsp;GB SD card or greater.
  Standard Console System : ~286MB
+
  Standard Console System : ~286&nbsp;MB
  + Desktop environment (lxde,gdm) : ~479MB
+
  + Desktop environment (lxde,gdm) : ~479&nbsp;MB
  
 
Starting with an empty SD card and using gparted, create:
 
Starting with an empty SD card and using gparted, create:
  50 MiB Primary Partition, fat16/fat32
+
  50&nbsp;MiB Primary Partition, FAT16/FAT32
 
  Rest as ext2/ext3/ext4/btrfs
 
  Rest as ext2/ext3/ext4/btrfs
  
First blank the MMC card's partition table with parted: (/dev/sdX as an example)  
+
First, blank the MMC card's partition table with parted: (/dev/sdX as an example)  
 
  sudo parted -s /dev/sdX mklabel msdos
 
  sudo parted -s /dev/sdX mklabel msdos
  
Line 462: Line 462:
 
  sudo mkfs.vfat -F 16 /dev/sdX1 -n boot
 
  sudo mkfs.vfat -F 16 /dev/sdX1 -n boot
  
The rootfs partition, doesn't need any special options, so just use fdisk, gparted, etc to create and format your rootfs partition..
+
The rootfs partition, doesn't need any special options, so just use fdisk, gparted, etc. to create and format your rootfs partition..
  
 
Gparted Example: http://nishanthmenon.blogspot.com/2008/08/how-to-boot-beagle.html
 
Gparted Example: http://nishanthmenon.blogspot.com/2008/08/how-to-boot-beagle.html
Line 498: Line 498:
  
 
=== U-Boot Boot Scripts ===
 
=== U-Boot Boot Scripts ===
The version of U-Boot installed or recommended to install uses boot scripts by default. This allows users to easily switch between multiple SD cards with different OS's with different parameters installed. Ubuntu/Debian requires a slight modification to the bootargs line vs. Angstrom, 'ro' vs 'rw'.
+
The version of U-Boot installed or recommended to install uses boot scripts by default. This allows users to easily switch between multiple SD cards with different OS's with different parameters installed. Ubuntu/Debian requires a slight modification to the bootargs line vs. Angstrom, 'ro' vs 'rw'.
  
 
  fixrtc: (only uInitrd) Resets RTC based on last mount
 
  fixrtc: (only uInitrd) Resets RTC based on last mount
Line 546: Line 546:
 
==== Beagle xM ====
 
==== Beagle xM ====
  
create a new file: uEnv.txt
+
Create a new file: uEnv.txt
 
  console=ttyO2,115200n8
 
  console=ttyO2,115200n8
 
   
 
   
Line 578: Line 578:
 
==== BeagleBone ====
 
==== BeagleBone ====
  
create a new file: uEnv.txt
+
Create a new file: uEnv.txt
 
  console=ttyO2,115200n8
 
  console=ttyO2,115200n8
 
   
 
   
Line 600: Line 600:
 
==== Panda/Panda ES ====
 
==== Panda/Panda ES ====
  
create a new file: uEnv.txt
+
Create a new file: uEnv.txt
 
  console=ttyO2,115200n8
 
  console=ttyO2,115200n8
 
   
 
   
Line 630: Line 630:
 
  #loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000
 
  #loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000
 
   
 
   
Umount the Boot Partition:
+
Umount the boot partition:
  
 
  sudo umount ./tmp
 
  sudo umount ./tmp
Line 652: Line 652:
 
  iface eth0 inet dhcp
 
  iface eth0 inet dhcp
  
Manual: From the Command line
+
Manual: From the command line
 
  sudo ifconfig -a
 
  sudo ifconfig -a
 
  sudo dhclient ethX (or wlanX/etc..)
 
  sudo dhclient ethX (or wlanX/etc..)
  
Additional Network Setup Information can be found [[BeagleBoardUbuntuNetwork|HERE]]
+
Additional network setup information can be found [[BeagleBoardUbuntuNetwork|HERE]].
  
 
= Advanced =
 
= Advanced =
Line 664: Line 664:
 
===Script File===
 
===Script File===
  
Latest Stable is : https://github.com/RobertCNelson/stable-kernel
+
Latest Stable is: https://github.com/RobertCNelson/stable-kernel
  
 
  export DIST=oneiric  (options are lucid/maverick/natty/oneiric/precise/squeeze/wheezy)
 
  export DIST=oneiric  (options are lucid/maverick/natty/oneiric/precise/squeeze/wheezy)
Line 679: Line 679:
 
  /bin/bash install-me.sh
 
  /bin/bash install-me.sh
  
Reboot with your new uImage
+
Reboot with your new uImage.
  
 
== Upgrade X-loader and U-boot ==
 
== Upgrade X-loader and U-boot ==
  
Compatible with Old Ax,Bx,Cx BeagleBoards
+
Compatible with old Ax, Bx, and Cx BeagleBoards
  
Note: Sometimes on these older boards, you just have to clear out the stored u-boot environment variables in nand to make this script work:
+
Note: Sometimes on these older boards, you just have to clear out the stored U-Boot environment variables in nand to make this script work:
 
  nand erase 260000 20000
 
  nand erase 260000 20000
  
Line 701: Line 701:
 
  1: Plug Serial Cable in and Start Serial terminal program
 
  1: Plug Serial Cable in and Start Serial terminal program
 
  2: Place MMC card in Beagle
 
  2: Place MMC card in Beagle
  3: Push and Hold User Button
+
  3: Push and hold the user button
  4: Plug-in Power
+
  4: Plug-in power
  5: Wait for U-boot countdown to finish, Let Off User Button
+
  5: Wait for U-Boot countdown to finish, and let off user button
  6: Wait for Flashing/script to end
+
  6: Wait for flashing/script to end
 
  7: Power down, remove and reformat MMC card to final OS
 
  7: Power down, remove and reformat MMC card to final OS
  
Line 712: Line 712:
 
You should see something like  
 
You should see something like  
  
  Are you sure? I Don't see [/dev/idontknow], here is what I do see...
+
  Are you sure? I don't see [/dev/idontknow], here is what I do see...
 
   
 
   
 
  fdisk -l:
 
  fdisk -l:
Line 742: Line 742:
 
  ./tools/install_image.sh
 
  ./tools/install_image.sh
  
Place SD card into Device and boot...
+
Place SD card into the device and boot...
 
  cd /opt/sgx
 
  cd /opt/sgx
 
  sudo tar xf GFX_4.06.00.03_libs.tar.gz
 
  sudo tar xf GFX_4.06.00.03_libs.tar.gz
Line 891: Line 891:
 
  ./run-SGX.sh (force run the new init script, or you can just reboot...)
 
  ./run-SGX.sh (force run the new init script, or you can just reboot...)
  
On Successful install:
+
On successful install:
 
  Stopping PVR
 
  Stopping PVR
 
  Starting PVR
 
  Starting PVR
Line 962: Line 962:
 
  ./create_dsp_package.sh
 
  ./create_dsp_package.sh
  
Copy DSP_Install_libs.tar.gz to beagle
+
Copy DSP_Install_libs.tar.gz to Beagle
  
 
Setup network...
 
Setup network...
Line 985: Line 985:
  
 
Example: (using http://www.bigbuckbunny.org/index.php/download/ 854x480 mp4 )
 
Example: (using http://www.bigbuckbunny.org/index.php/download/ 854x480 mp4 )
  Note: seems broken in ubuntu precise armhf...
+
  Note: it seems broken in Ubuntu precise armhf...
  
 
  sudo gst-launch playbin2 uri=file:///home/USER/big_buck_bunny_480p_surround-fix.avi
 
  sudo gst-launch playbin2 uri=file:///home/USER/big_buck_bunny_480p_surround-fix.avi
Line 994: Line 994:
 
== Xorg omapfb Drivers ==
 
== Xorg omapfb Drivers ==
  
By default Ubuntu will try to use the FBDEV video driver, however for the beagleboard we can take advantage of a more software optimized driver (still not using the sgx video hardware) using the NEON extensions of the Cortex-A8 core.
+
By default Ubuntu will try to use the FBDEV video driver, however for the BeagleBoard we can take advantage of a more software optimized driver (still not using the sgx video hardware) using the NEON extensions of the Cortex-A8 core.
  
 
cat /var/log/Xorg.0.log | grep FBDEV
 
cat /var/log/Xorg.0.log | grep FBDEV
Line 1,054: Line 1,054:
 
== Changing DVI output resolution ==
 
== Changing DVI output resolution ==
  
Ubuntu 10.10 above defaults to a resolution of 1284x768@16. This is set in the boot.cmd file in the boot partition of the SD card. To change the resolution the DVI output, edit boot.cmd accordingly then recreate the boot.scr file by:
+
Ubuntu 10.10 above defaults to a resolution of 1284x768@16. This is set in the boot.cmd file in the boot partition of the SD card. To change the resolution the DVI output, edit boot.cmd accordingly then recreate the boot.scr file by:
  
 
  mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "Ubuntu 10.10" -d ./boot.cmd ./boot.scr
 
  mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "Ubuntu 10.10" -d ./boot.cmd ./boot.scr
  
Then reboot the BeagleBoard
+
Then reboot the BeagleBoard.
  
 
== S-Video ==
 
== S-Video ==
Line 1,065: Line 1,065:
 
===Process for setting up S-Video===
 
===Process for setting up S-Video===
  
S-video is tested to be working on 2.6.35-rc5-dl9. BeagleBoard s-video output has traditionally been enabled by "using bootargs (boot arguments) at uboot". In newer versions of the BeagleBoard, the developers have made things easier by instructing u-boot to look for a .scr file about a dozen lines long that is called cmd.boot.scr, and then follow said parameters. In Angstrom, no boot.scr file is needed, instead, an even easier system is used, where a simple editable .txt file called uEnv.txt containing these parameters suffices (Env is for "environment"). For some reason, in the Ubuntu download files, typically there a bit of convoluted process where uEnv.txt is called up, uEnv.txt says "Go read conf.boot.scr", and cmd.boot.scr sets up the s-video.
+
S-video is tested to be working on 2.6.35-rc5-dl9. BeagleBoard s-video output has traditionally been enabled by "using bootargs (boot arguments) at uboot". In newer versions of the BeagleBoard, the developers have made things easier by instructing U-Boot to look for a .scr file about a dozen lines long that is called cmd.boot.scr, and then follow said parameters. In Angstrom, no boot.scr file is needed, instead, an even easier system is used, where a simple editable .txt file called uEnv.txt containing these parameters suffices (Env is for "environment"). For some reason, in the Ubuntu download files, typically there a bit of convoluted process where uEnv.txt is called up, uEnv.txt says "Go read conf.boot.scr", and cmd.boot.scr sets up the s-video.
  
 
To make cmd.boot.scr, create a text file named cmd.boot, then convert it into a .scr file with mkimage by running the following commands on the terminal:
 
To make cmd.boot.scr, create a text file named cmd.boot, then convert it into a .scr file with mkimage by running the following commands on the terminal:
Line 1,090: Line 1,090:
  
 
===Screen cutoff problem===
 
===Screen cutoff problem===
 
  
 
NTSC resolution is supposed to be 640x480. However the edge bands around the TV screen differ from TV to TV. Output of '''fbset''' shown below:
 
NTSC resolution is supposed to be 640x480. However the edge bands around the TV screen differ from TV to TV. Output of '''fbset''' shown below:
Line 1,101: Line 1,100:
 
     endmode
 
     endmode
  
Depending on your TV device, and what desktop you are running a certain amount of screen cutoff is likely to occur. This is called [http://en.wikipedia.org/wiki/Overscan Overscan]. Typically, around 5-10% of the left and right edges of display are off the screen (using Ubuntu with xfce). This seems to be due to the fact that there is only one display resolution that is set for NTSC: <!-- I don't know about PAL--> 720 X 482. It is not possible to change this setting in the xfce4 Settings Manager like one would normally be able to do, because other options are greyed out/do not exist. Normally, even if the Settings Manager did not allow for it, a different resolution setting could be obtained by editing the xorg.conf file in /etc/X11/xorg.conf-4, or some similar place. HOWEVER there is no xorg.conf file in the Beagle version of xfce. xrandr shows the display is set to the minimum of 720x574. Adding an xorg.conf does not fix the problem, because Beagle takes its (analog) display resolution settings directly from the display driver, where 720 X 480 (720 X 574 for PAL <!-- This I gather, but I really don't know--> ) is hard coded in.   
+
Depending on your TV device, and what desktop you are running a certain amount of screen cutoff is likely to occur. This is called [http://en.wikipedia.org/wiki/Overscan overscan]. Typically, around 5-10% of the left and right edges of display are off the screen (using Ubuntu with xfce). This seems to be due to the fact that there is only one display resolution that is set for NTSC: <!-- I don't know about PAL--> 720 X 482. It is not possible to change this setting in the xfce4 Settings Manager like one would normally be able to do, because other options are greyed out/do not exist. Normally, even if the Settings Manager did not allow for it, a different resolution setting could be obtained by editing the xorg.conf file in /etc/X11/xorg.conf-4, or some similar place. HOWEVER there is no xorg.conf file in the Beagle version of xfce. xrandr shows the display is set to the minimum of 720x574. Adding an xorg.conf does not fix the problem, because Beagle takes its (analog) display resolution settings directly from the display driver, where 720 X 480 (720 X 574 for PAL <!-- This I gather, but I really don't know--> ) is hard coded in.   
  
 
An inelegant but usable workaround for the xfce desktop environment is simply to create vertical and horizontal panels that fill up the space that is cut off on the screen. This is not a complete solution, but at least it will prevent maximized windows from going off into nowhere land.
 
An inelegant but usable workaround for the xfce desktop environment is simply to create vertical and horizontal panels that fill up the space that is cut off on the screen. This is not a complete solution, but at least it will prevent maximized windows from going off into nowhere land.
 
  
 
Truly fixing this would involve going into the display driver and reprogramming it to include additional S-video settings besides just NTSC and PAL. Specifically, to make the whole framebuffer fit on the screen you would need to adjust the overlay in the display driver, the OMAP DSS2. (Didn't test this yet. Some pointers from the driver's documentation below)
 
Truly fixing this would involve going into the display driver and reprogramming it to include additional S-video settings besides just NTSC and PAL. Specifically, to make the whole framebuffer fit on the screen you would need to adjust the overlay in the display driver, the OMAP DSS2. (Didn't test this yet. Some pointers from the driver's documentation below)
Line 1,125: Line 1,123:
 
  git clone git://github.com/RobertCNelson/stable-kernel.git
 
  git clone git://github.com/RobertCNelson/stable-kernel.git
  
Build Kernel
+
Build kernel
 
  ./build_kernel.sh
 
  ./build_kernel.sh
  
Optional Building Deb File
+
Optional building the deb file
 
  ./build_deb.sh
 
  ./build_deb.sh
  
Line 1,136: Line 1,134:
 
== Using a File for Swap Instead of a Partition ==
 
== Using a File for Swap Instead of a Partition ==
  
On the Bealgeboard you should expect to need a swap file given the limitation of how much RAM they have (between 256Mb and 512Mb). Some system programs like apt-get will only run properly when some swap space is present (due to 256Mb not being enough RAM).
+
On the Bealgeboard you should expect to need a swap file given the limitation of how much RAM they have (between 256&nbsp;MB and 512&nbsp;MB). Some system programs like apt-get will only run properly when some swap space is present (due to 256&nbsp;MB not being enough RAM).
  
 
Some images such as those from Linaro.org do not come with a swap partition or any swap space allocated.
 
Some images such as those from Linaro.org do not come with a swap partition or any swap space allocated.
  
Under Linux swap space can be either a dedicated partition or a single file. Both can be mounted as swap which the OS can access.
+
Under Linux swap space can be either a dedicated partition or a single file. Both can be mounted as swap which the OS can access.
  
 
=== Creating a Swapfile ===
 
=== Creating a Swapfile ===
Line 1,160: Line 1,158:
 
= Ubuntu Software =
 
= Ubuntu Software =
  
== Wifi Networking (command line) ==
+
== Wi-Fi Networking (command line) ==
  
 
=== /etc/network/interfaces ===
 
=== /etc/network/interfaces ===
  
It is possible and relatively easy to configure a wifi card from the command line.
+
It is possible and relatively easy to configure a Wi-Fi card from the command line.
  
You will need to edit the /etc/network/interfaces file. There are several guides available via Google.
+
You will need to edit the /etc/network/interfaces file. There are several guides available via Google.
  
 
This is a particularly useful guide http://ubuntuforums.org/showthread.php?t=202834  
 
This is a particularly useful guide http://ubuntuforums.org/showthread.php?t=202834  
Line 1,185: Line 1,183:
 
  wpa-psk < INSERT KEY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX>
 
  wpa-psk < INSERT KEY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX>
  
Your wifi card will automatically load these settings on start up and give network access.
+
Your Wi-Fi card will automatically load these settings on start up and give network access.
  
 
== Lightweight window managers ==
 
== Lightweight window managers ==
Line 1,191: Line 1,189:
 
If you intend to use Ubuntu on the BeagleBoard you can install JWM or IceWM to improve performance.
 
If you intend to use Ubuntu on the BeagleBoard you can install JWM or IceWM to improve performance.
  
JWM in particular uses little RAM. On a BeagleBoard with 256MB, using JWM will leave about 60MB free to run apps in.
+
JWM in particular uses little RAM. On a BeagleBoard with 256&nbsp;MB, using JWM will leave about 60&nbsp;MB free to run applications in.
  
 
== Web Apps ==
 
== Web Apps ==
  
 
=== Midori ===
 
=== Midori ===
Given that the BeagleBoard has fewer resources than a desktop a light weight browser is more responsive. Midori is a light weight browser that still supports flash etc
+
Given that the BeagleBoard has fewer resources than a desktop a light-weight browser is more responsive. Midori is a light-weight browser that still supports flash, etc. It is available from the standard repositories.
It is available from the standard repositories.
 
 
http://en.wikipedia.org/wiki/Midori_%28web_browser%29
 
http://en.wikipedia.org/wiki/Midori_%28web_browser%29
  
Line 1,203: Line 1,200:
  
 
=== Motion ===
 
=== Motion ===
If you have a video source (webcam, IP cam etc) which appears as /dev/video0 etc then you can use the Linux Surveillance software "motion" to monitor the video stream and record periods of activity.
+
If you have a video source (webcam, IP cam, etc.) which appears as /dev/video0, etc. then you can use the Linux surveillance software "motion" to monitor the video stream and record periods of activity.
  
 
Motion is also available from the standard repositories.
 
Motion is also available from the standard repositories.
 
http://www.debian-administration.org/article/An_Introduction_to_Video_Surveillance_with_%27Motion%27
 
http://www.debian-administration.org/article/An_Introduction_to_Video_Surveillance_with_%27Motion%27
Using a 960x720 resolution webcam with 15 fps rate under the UVC driver the Rev C BeagleBoard under Xubuntu reports ~60% CPU utilisation.
+
Using a 960x720 resolution webcam with a 15&nbsp;fps rate under the UVC driver the Rev C BeagleBoard under Xubuntu reports ~60% CPU utilisation.
  
 
To make the BeagleBoard automatically start recording on boot do the following:
 
To make the BeagleBoard automatically start recording on boot do the following:
  
 
* Auto Login - run "gdmsetup" from a terminal and select a user to automatically login  
 
* Auto Login - run "gdmsetup" from a terminal and select a user to automatically login  
* Sessions - make sure you don't save any previous xwindows sessions so that it doesn't prompt you for which one you want
+
* Sessions - make sure you don't save any previous X Windows sessions so that it doesn't prompt you for which one you want
* motion.conf - amend /etc/motion/motion.conf to the settings you want (ie video output directory, record only video, record in mpeg4, set frame rate etc). Do this with "sudo medit /etc/motion/motion.conf" at a prompt.
+
* motion.conf - amend /etc/motion/motion.conf to the settings you want (that is, video output directory, record only video, record in MPEG-4, set frame rate, etc). Do this with "sudo medit /etc/motion/motion.conf" at a prompt.
 
* Boot script - create a new script in /etc/rc2.d called "S65motion_client" and set permissions appropriately ("sudo chmod 777 /etc/rc2.d/S65motion_client"). Then edit the file so it has the following text in it:
 
* Boot script - create a new script in /etc/rc2.d called "S65motion_client" and set permissions appropriately ("sudo chmod 777 /etc/rc2.d/S65motion_client"). Then edit the file so it has the following text in it:
  
Line 1,221: Line 1,218:
 
This will now launch the motion client as root when you boot up.
 
This will now launch the motion client as root when you boot up.
  
Also note that unless your BeagleBoard can remember the time (battery backed up clock installed) the timestamps will not be correct until you update the time. If your BeagleBoard has an Internet Connection this can be achieved with the ntpdate app.
+
Also note that unless your BeagleBoard can remember the time (battery backed up clock installed) the timestamps will not be correct until you update the time. If your BeagleBoard has an Internet connection this can be achieved with the ntpdate application.
 
 
  
 
== Robotics ==
 
== Robotics ==
  
 
=== ROS ===
 
=== ROS ===
Willow Garage hosts the open source Robotic Operating System (ROS). Whilst it is natively supported in Ubuntu, the official packages are only for the x86 platform. ROS can be installed from source and is generally easy to do so (although slow).
+
Willow Garage hosts the open source Robotic Operating System (ROS). Whilst it is natively supported in Ubuntu, the official packages are only for the x86 platform. ROS can be installed from source and is generally easy to do so (although slow).
  
Following the instructions from here will build and install ROS on your beagleboard:
+
Following the instructions from here will build and install ROS on your BeagleBoard:
  
 
http://www.ros.org/wiki/cturtle/Installation/Ubuntu/SVN
 
http://www.ros.org/wiki/cturtle/Installation/Ubuntu/SVN
  
You will need an Internet connection for your Beagleboard for these scripts to work.
+
You will need an Internet connection for your BeagleBoard for these scripts to work.
  
For more information about ROS see www.ros.org
+
For more information about ROS, see www.ros.org.

Revision as of 13:09, 9 October 2012

(For BeagleBoardAngstrom, click here.)

This page is about running a distribution (ARM EABI) Ubuntu at BeagleBoard. BeagleBoard will boot the (ARM EABI) Ubuntu distribution from the SD card. Since much of this page is generic, it has also be extended to help support devices such as the PandaBoard and BeagleBone.

  • For the best experience, make sure you have an LCD/HDMI monitor attached to the BeagleBoard's HDMI port, 2 GB/4 GB/8 GB SD card, and a known good USB 2.0 hub with mouse and keyboard.

Contents

Help

If you need any help:

  • Ubuntu related help:
    • #ubuntu-arm: Ubuntu's ARM IRC on Freenode (logs -> year -> month -> day -> #ubuntu-arm.html)
  • When asking for help, please provide some debugging information:
    • U-Boot Version installed on board
    • Kernel Version: uname -a
    • pastebin dmesg
      • Copy from serial port or use "dmesg | pastebinit" (sudo apt-get install pastebinit)

Required Beagle Software

Angstrom's X-loader/MLO & U-Boot

  • All old Ax, Bx, and Cx boards are required to upgrade to at least these MLO and U-Boot versions.
  • XM Boards have no NAND, so u-boot.img is always required on the first partition
  • Directions: Upgrade X-loader and U-Boot

Omap Serial Changes

boot.scr/boot.cmd changes:

With 2.6.35:

console=ttyS2,115200n8

With 2.6.36/37+:

console=ttyO2,115200n8

Serial console login: /etc/init/ttyO2.conf

start on stopped rc RUNLEVEL=[2345]
stop on runlevel [!2345]

respawn
exec /sbin/getty 115200 ttyO2

Method 1: Download a Complete Pre-Configured Image

Canonical/Ubuntu Images

Support: #ubuntu-arm: Ubuntu's ARM IRC on Freenode (logs -> year -> month -> day -> #ubuntu-arm.html)

Canonical only supports certain boards with images, at this moment.

  • BeagleBoard xM -> "omap"
  • PandaBoard & PandaBoard ES -> "omap4"

https://wiki.ubuntu.com/ARM/OMAP

Demo Image

  • These demonstration images contain a custom Mainline based kernel with experimental enhancements to the boards supported. They are usually updated about once a month, as new features/enhancements get added by the community. Currently, this image ships with two kernel's "x" which is for mainline omap3+ devices (BeagleBoard/PandaBoard) and the "psp" which is for specifically the BeagleBone, as much of the kernel support for this device is currently in a TI Git kernel tree on arago-project. The kernel is stress tested by a farm of Panda/Beagle's running 24/7 under a heavy load (building gcc trunk/mainline kernel).
git clone git://github.com/RobertCNelson/stable-kernel.git
cd stable-kernel
./build_kernel.sh
git clone git://github.com/RobertCNelson/linux-dev.git
cd linux-dev
git checkout origin/am33x-v3.2 -b am33x-v3.2
./build_kernel.sh
  • Advanced Users only: Userspace, used in these demo images:
https://github.com/RobertCNelson/omap-image-builder

If the script in these demo images fail: email "bugs@rcn-ee.com" I need: terminal command, terminal log, distribution name, arch...

Precise 12.04 armhf

Image Updated:

  • September 27th
    • Beagle/Panda: v3.2.30-x14 kernel
    • Bone: v3.2.30-psp23 kernel
  • September 10th: r16
    • Beagle/Panda: v3.2.28-x14 kernel
    • Bone: v3.2.28-psp21 kernel (now with "backlight" support for CircuitCo LCD3)
  • July 29th: r5
    • Beagle/Panda: v3.2.24-x14 kernel
    • Bone: v3.2.23-psp18 kernel
  • July 16th: r4
    • Beagle/Panda: v3.2.23-x14 kernel
    • Bone: v3.2.21-psp16 kernel
  • June 12th: r3
    • Beagle/Panda: v3.2.19-x13 kernel
    • Bone: v3.2.18-psp14 kernel (now supports the BeagleBone LCD from CircuitCo)

Services Active:

Note: Depending on your internal network these may work out the box
Apache, Port 80: http://arm/
SSH, Port 22: ssh ubuntu@arm
Getty, Serial Port

Default user: ubuntu pass: temppwd

Get prebuilt image:

wget http://rcn-ee.net/deb/rootfs/precise/ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
mirrors (will take some time to update):
wget http://ynezz.ibawizard.net/beagleboard/precise/ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz

Verify image with:

md5sum ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
6742f2edfbd4bebacf532ed5966e7765  ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz

Unpack image:

tar xJf ubuntu-12.04-r7-minimal-armhf-2012-09-27.tar.xz
cd ubuntu-12.04-r7-minimal-armhf-2012-09-27

If you don't know the location of your SD card:

sudo ./setup_sdcard.sh --probe-mmc

You should see something like

Are you sure? I Don't see [/dev/idontknow], here is what I do see...

fdisk -l:
Disk /dev/sda: 500.1 GB, 500107862016 bytes <- x86 Root Drive
Disk /dev/mmcblk0: 3957 MB, 3957325824 bytes <- MMC/SD card

mount:
/dev/sda1 on / type ext4 (rw,errors=remount-ro,commit=0) <- x86 Root Partition
  • In this example, we can see via mount, /dev/sda1 is the x86 rootfs, therefore /dev/mmcblk0 is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...

Install image:

Quick install script for "board"

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"

"board" options:

  • BeagleBoard Ax/Bx - beagle_bx
  • BeagleBoard Cx - beagle_cx
  • BeagleBoard xMA/B/C - beagle_xm
  • BeagleBone Ax - bone
  • PandaBoard Ax - panda
  • PandaBoard ES - panda_es

So for the BeagleBoard xM:

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  • Additional Options
    • --rootfs <ext4 default>
    • --swap_file <swap file size in MB's>
    • --addon pico <ti pico projector>
    • --svideo-ntsc <use ntsc over dvi for video)
    • --svideo-pal <use pal over dvi for video)

You should now be able to unmount the SD card from you PC, insert into your board, reboot and have the OS loaded.

For a basic framebuffer driven desktop environment: (make sure network is setup):

Ethernet: "sudo ifconfig -a" and "sudo dhclient usb1" or "sudo dhclient eth0"
Wireless: http://elinux.org/BeagleBoardUbuntu#Wifi_Networking_.28command_line.29

Then run:

/bin/bash /boot/uboot/tools/ubuntu/minimal_lxde_desktop.sh

Advanced: Build Image:

Built with a fork of project-rootstock (ARM native mode, run directly on beagleboard), using a script from omap-image-builder:

git clone git://github.com/RobertCNelson/omap-image-builder.git
cd omap-image-builder
git checkout v2012.9-2 -b v2012.9-2
touch release
./build_image.sh

Oneiric 11.10

Image Updated:

  • September 27th (note: probally going to be last update..)
    • Beagle/Panda: v3.2.30-x14 kernel
    • Bone: v3.2.30-psp23 kernel
  • September 10th: r13
    • Beagle/Panda: v3.2.28-x14 kernel
    • Bone: v3.2.28-psp21 kernel (now with "backlight" support for CircuitCo LCD3)
  • July 29th: r12
    • Beagle/Panda: v3.2.24-x14 kernel
    • Bone: v3.2.23-psp18 kernel
  • July 16th: r11
    • Beagle/Panda: v3.2.23-x14 kernel
    • Bone: v3.2.21-psp16 kernel
  • June 12th: r10
    • Beagle/Panda: v3.2.19-x13 kernel
    • Bone: v3.2.18-psp14 kernel (now supports the BeagleBone LCD from CircuitCo)

Services Active:

Note: Depending on your internal network these may work out the box
Apache, Port 80: http://arm/
SSH, Port 22: ssh ubuntu@arm
Getty, Serial Port

Default user: ubuntu pass: temppwd

Get prebuilt image:

wget http://rcn-ee.net/deb/rootfs/oneiric/ubuntu-11.10-r14-minimal-armel-2012-09-27.tar.xz
mirrors (will take some time to update):
wget http://ynezz.ibawizard.net/beagleboard/oneiric/ubuntu-11.10-r14-minimal-armel-2012-09-27.tar.xz

Verify Image with:

md5sum ubuntu-11.10-r14-minimal-armel-2012-09-27.tar.xz
3c600a52751f71e0ae04adef1ba91cef  ubuntu-11.10-r14-minimal-armel-2012-09-27.tar.xz

Unpack Image:

tar xJf ubuntu-11.10-r14-minimal-armel-2012-09-27.tar.xz
cd ubuntu-11.10-r14-minimal-armel-2012-09-27

If you don't know the location of your SD card:

sudo ./setup_sdcard.sh --probe-mmc

You should see something like

Are you sure? I don't see [/dev/idontknow], here is what I do see...

fdisk -l:
Disk /dev/sda: 500.1 GB, 500107862016 bytes <- x86 Root Drive
Disk /dev/mmcblk0: 3957 MB, 3957325824 bytes <- MMC/SD card

mount:
/dev/sda1 on / type ext4 (rw,errors=remount-ro,commit=0) <- x86 Root Partition
  • In this example, we can see via mount, /dev/sda1 is the x86 rootfs, therefore /dev/mmcblk0 is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...

Install image:

Quick install script for "board"

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"

"board" Options:

  • BeagleBoard Ax/Bx - beagle_bx
  • BeagleBoard Cx - beagle_cx
  • BeagleBoard xMA/B/C - beagle_xm
  • BeagleBone Ax - bone
  • PandaBoard Ax - panda
  • PandaBoard ES - panda_es

So for the BeagleBoard xM:

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  • Additional Options
    • --rootfs <ext4 default>
    • --swap_file <swap file size in MB's>
    • --addon pico <ti pico projector>
    • --svideo-ntsc <use ntsc over dvi for video)
    • --svideo-pal <use pal over dvi for video)

You should now be able to unmount the SD card from you PC, insert into your Board, reboot and have OS loaded.

For a full lxde based GUI run this on your BeagleBoard (make sure network is setup):

Ethernet: "sudo ifconfig -a" and "sudo dhclient usb1" or "sudo dhclient eth0"
Wireless: http://elinux.org/BeagleBoardUbuntu#Wifi_Networking_.28command_line.29

Then run:

/bin/bash /boot/uboot/tools/ubuntu/minimal_lxde_desktop.sh

Advanced: Build Image:

Built with a fork of project-rootstock (ARM native mode, run directly on BeagleBoard), using a script from omap-image-builder:

git clone git://github.com/RobertCNelson/omap-image-builder.git
cd omap-image-builder
git checkout v2012.9-2 -b v2012.9-2
touch release
./build_image.sh

Quantal 12.10 armhf testing

Image Updated:

  • September 27th: beta2
    • Beagle/Panda: v3.2.30-x14 kernel
    • Bone: v3.2.30-psp23 kernel
  • September 10th: beta1
    • Beagle/Panda: v3.2.28-x14 kernel
    • Bone: v3.2.28-psp21 kernel (now with "backlight" support for CircuitCo LCD3)
  • July 29th: alpha3
    • Beagle/Panda: v3.2.24-x14 kernel
    • Bone: v3.2.23-psp18 kernel
  • July 16th: alpha2
    • Beagle/Panda: v3.2.23-x14 kernel
    • Bone: v3.2.21-psp16 kernel

Services Active:

Note: Depending on your internal network these may work out the box
Apache, Port 80: http://arm/
SSH, Port 22: ssh ubuntu@arm
Getty, Serial Port

Default user: ubuntu pass: temppwd

Get prebuilt image:

wget http://rcn-ee.net/deb/rootfs/quantal/ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
mirrors (will take some time to update):
wget http://ynezz.ibawizard.net/beagleboard/quantal/ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz

Verify image with:

md5sum ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
cb1a79156807c29475fff28c3f9af155  ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz

Unpack image:

tar xJf ubuntu-quantal-beta2-minimal-armhf-2012-09-27.tar.xz
cd ubuntu-quantal-beta2-minimal-armhf-2012-09-27

If you don't know the location of your SD card:

sudo ./setup_sdcard.sh --probe-mmc

You should see something like

Are you sure? I don't see [/dev/idontknow], here is what I do see...

fdisk -l:
Disk /dev/sda: 500.1 GB, 500107862016 bytes <- x86 Root Drive
Disk /dev/mmcblk0: 3957 MB, 3957325824 bytes <- MMC/SD card

mount:
/dev/sda1 on / type ext4 (rw,errors=remount-ro,commit=0) <- x86 Root Partition
  • In this example, we can see via mount, /dev/sda1 is the x86 rootfs, therefore /dev/mmcblk0 is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./setup_sdcard.sh...

Install image:

Quick install script for "board"

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot "board"

"board" options:

  • BeagleBoard Ax/Bx - beagle_bx
  • BeagleBoard Cx - beagle_cx
  • BeagleBoard xMA/B/C - beagle_xm
  • BeagleBone Ax - bone
  • PandaBoard Ax - panda
  • PandaBoard ES - panda_es

So for the BeagleBoard xM:

sudo ./setup_sdcard.sh --mmc /dev/sdX --uboot beagle_xm
  • Additional Options
    • --rootfs <ext4 default>
    • --swap_file <swap file size in MB's>
    • --addon pico <ti pico projector>
    • --svideo-ntsc <use ntsc over dvi for video)
    • --svideo-pal <use pal over dvi for video)

You should now be able to unmount the SD card from you PC, insert into your Board, reboot and have the OS loaded.

For a basic framebuffer driven desktop environment: (make sure network is setup):

Ethernet: "sudo ifconfig -a" and "sudo dhclient usb1" or "sudo dhclient eth0"
Wireless: http://elinux.org/BeagleBoardUbuntu#Wifi_Networking_.28command_line.29

Then run:

/bin/bash /boot/uboot/tools/ubuntu/minimal_lxde_desktop.sh

Advanced: Build Image:

Built with a fork of project-rootstock (ARM native mode, run directly on BeagleBoard), using a script from omap-image-builder:

git clone git://github.com/RobertCNelson/omap-image-builder.git
cd omap-image-builder
git checkout v2012.9-2 -b v2012.9-2
touch release
./build_image.sh

Method 2: Use the NetInstall method

You will need a 1 GB/2 GB SD card or greater.

Standard system : ~700 MB

Ubuntu 12.04 (Precise)

git clone git://github.com/RobertCNelson/netinstall.git
cd netinstall

Install script for "board"

sudo ./mk_mmc.sh --mmc /dev/sdX --uboot "board" --distro precise-armhf

"board" Options:

  • BeagleBoard Ax/Bx - beagle_bx
  • BeagleBoard Cx - beagle_cx
  • BeagleBoard xMA/B/C - beagle_xm
  • BeagleBone Ax - bone
  • PandaBoard Ax - panda
  • PandaBoard ES - panda_es

So for the BeagleBoard xM:

sudo ./mk_mmc.sh --mmc /dev/sdX --uboot beagle_xm --distro precise-armhf
  • Options:
    • --uboot : beagle_bx, beagle, panda
    • --distro : maverick, oneiric
    • --firmware : installs firmware
    • --serial-mode : debian-installer uses Serial Port

Place SD card into BeagleBoard and boot:

Configure the network:

usb0: USB net <- (usually the OTG port)
eth0: USB net <- (usually the smsc95xx adapter on the BeagleBoard and PandaBoard)
wlan0: Wifi <- Your USDB-Wi-Fi device.. 

Troubshooting: If boot fails..

  • Hold the user button down to force booting from MMC
  • Upgrade X-loader and U-boot Upgrade X-loader and U-Boot
  • Clear U-boot's Environment Variables in nand:
nand erase 260000 20000

NetInstall assumptions:

Continue with out Kernel Modules <yes>
Partition <Guided - use the largest continuous free space>

Method 3: Manual Install (no automatic scripts)

For this section, you can use the files from above:

Demo Images: http://elinux.org/BeagleBoardUbuntu#Demo_Image
Rootstock: http://elinux.org/BeagleBoardUbuntu#Build_an_Ubuntu_root_file_system_with_RootStock

BUT it assumes you have your own kernel uImage/modules from any of the many sources..

Partition SD Card

You will need a 1 GB SD card or greater.

Standard Console System : ~286 MB
+ Desktop environment (lxde,gdm) : ~479 MB

Starting with an empty SD card and using gparted, create:

50 MiB Primary Partition, FAT16/FAT32
Rest as ext2/ext3/ext4/btrfs

First, blank the MMC card's partition table with parted: (/dev/sdX as an example)

sudo parted -s /dev/sdX mklabel msdos

With fdisk: (note: GNU Fdisk doesn't work..)

sudo fdisk /dev/sdX << __EOF__
n
p
1

+64M
t
e
p
w
__EOF__

Make sure to set the partition boot flag

sudo parted --script /dev/sdX set 1 boot on

And format it as vfat:

sudo mkfs.vfat -F 16 /dev/sdX1 -n boot

The rootfs partition, doesn't need any special options, so just use fdisk, gparted, etc. to create and format your rootfs partition..

Gparted Example: http://nishanthmenon.blogspot.com/2008/08/how-to-boot-beagle.html

Boot Partition

Requirements:

Mount the fatfs partition of your SD card.

Mount such as: (/dev/sdX1 is the fat Boot Partition)

mkdir -p ./tmp
sudo mount /dev/sdX1 ./tmp

MLO and U-Boot

Beagle/Beagle xM

Download and copy MLO and U-Boot from here:

First download "http://rcn-ee.net/deb/tools/beagleboard/MLO-beagleboard-v2012.07-r1" as MLO to the Boot Partition
Then download "http://rcn-ee.net/deb/tools/beagleboard/u-boot-beagleboard-v2012.07-r1.img" as u-boot.img to the Boot Partition

BeagleBone

Download and copy MLO and U-Boot from here:

First download "http://rcn-ee.net/deb/tools/beaglebone/MLO-beaglebone-v2012.07-490-ga6f0c4f-r0" as MLO to the Boot Partition
Then download "http://rcn-ee.net/deb/tools/beaglebone/u-boot-beaglebone-v2012.07-490-ga6f0c4f-r0.img" as u-boot.img to the Boot Partition

Panda/Panda ES

Download and copy MLO and U-Boot from here:

First download "http://rcn-ee.net/deb/tools/pandaboard/MLO-pandaboard-v2012.04.01-r2" as MLO to the Boot Partition
Then download "http://rcn-ee.net/deb/tools/pandaboard/u-boot-pandaboard-v2012.04.01-r2.img" as u-boot.img to the Boot Partition

U-Boot Boot Scripts

The version of U-Boot installed or recommended to install uses boot scripts by default. This allows users to easily switch between multiple SD cards with different OS's with different parameters installed. Ubuntu/Debian requires a slight modification to the bootargs line vs. Angstrom, 'ro' vs 'rw'.

fixrtc: (only uInitrd) Resets RTC based on last mount
buddy=${buddy}: (both) Kernel Zippy1/2 Support
mpurate=${mpurate}: (recommended core clock)

boot.scr -> uEnv.txt

Newer version's of u-boot now look for a uEnv.txt file vs the older boot.scr, since most boards still use the older boot.scr here's an easy compatibility script:

create a new file: uEnv.txt

bootenv=boot.scr
loaduimage=fatload mmc ${mmcdev} ${loadaddr} ${bootenv}
mmcboot=echo Running boot.scr script from mmc ...; source ${loadaddr}

Beagle Bx/Cx

create a new file: uEnv.txt

console=ttyO2,115200n8

vram=12MB
defaultdisplay=dvi
dvimode=1280x720MR-16@60

optargs=console=tty0

mmcroot=/dev/mmcblk0p2 ro
mmcrootfstype=ext4 rootwait fixrtc

xyz_load_image=fatload mmc 0:1 0x80300000 zImage
xyz_load_initrd=fatload mmc 0:1 0x81600000 initrd.img; setenv initrd_size ${filesize}
xyz_load_dtb=fatload mmc 0:1 0x815f0000 /dtbs/${dtb_file}

video_args=setenv video vram=${vram} omapfb.mode=${defaultdisplay}:${dvimode} omapdss.def_disp=${defaultdisplay}
expansion_args=setenv expansion buddy=${buddy} buddy2=${buddy2} musb_hdrc.fifo_mode=5
mmcargs=setenv bootargs console=${console} ${optargs} ${video} root=${mmcroot} rootfstype=${mmcrootfstype} ${expansion}

device_args=run video_args; run expansion_args; run mmcargs

#zImage and initrd.gz:
xyz_mmcboot=run xyz_load_image; run xyz_load_initrd; echo Booting from mmc ...
loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000 0x81600000:${initrd_size}

#zImage only:
#xyz_mmcboot=run xyz_load_image; echo Booting from mmc ...
#loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000

Beagle xM

Create a new file: uEnv.txt

console=ttyO2,115200n8

vram=12MB
defaultdisplay=dvi
dvimode=1280x720MR-16@60

optargs=console=tty0

mmcroot=/dev/mmcblk0p2 ro
mmcrootfstype=ext4 rootwait fixrtc

xyz_load_image=fatload mmc 0:1 0x80300000 zImage
xyz_load_initrd=fatload mmc 0:1 0x81600000 initrd.img; setenv initrd_size ${filesize}
xyz_load_dtb=fatload mmc 0:1 0x815f0000 /dtbs/${dtb_file}

video_args=setenv video vram=${vram} omapfb.mode=${defaultdisplay}:${dvimode} omapdss.def_disp=${defaultdisplay}
expansion_args=setenv expansion buddy=${buddy} buddy2=${buddy2} camera=${camera}
mmcargs=setenv bootargs console=${console} ${optargs} ${video} root=${mmcroot} rootfstype=${mmcrootfstype} ${expansion}

device_args=run video_args; run expansion_args; run mmcargs

#zImage and initrd.gz:
xyz_mmcboot=run xyz_load_image; run xyz_load_initrd; echo Booting from mmc ...
loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000 0x81600000:${initrd_size}

#zImage only:
#xyz_mmcboot=run xyz_load_image; echo Booting from mmc ...
#loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000

BeagleBone

Create a new file: uEnv.txt

console=ttyO2,115200n8

mmcroot=/dev/mmcblk0p2 ro
mmcrootfstype=ext4 rootwait fixrtc

xyz_load_image=fatload mmc 0:1 0x80300000 zImage
xyz_load_initrd=fatload mmc 0:1 0x81600000 initrd.img; setenv initrd_size ${filesize}
xyz_load_dtb=fatload mmc 0:1 0x815f0000 /dtbs/${dtb_file}

mmcargs=setenv bootargs console=${console} ${optargs} root=${mmcroot} rootfstype=${mmcrootfstype}

#zImage and initrd.gz:
xyz_mmcboot=run xyz_load_image; run xyz_load_initrd; echo Booting from mmc ...
loaduimage=run xyz_mmcboot; run mmcargs; bootz 0x80300000 0x81600000:${initrd_size}

#zImage only:
#xyz_mmcboot=run xyz_load_image; echo Booting from mmc ...
#loaduimage=run xyz_mmcboot; run mmcargs; bootz 0x80300000

Panda/Panda ES

Create a new file: uEnv.txt

console=ttyO2,115200n8

vram=16MB
defaultdisplay=dvi
dvimode=1280x720MR-16@60

optargs=console=tty0

mmcroot=/dev/mmcblk0p2 ro
mmcrootfstype=ext4 rootwait fixrtc

xyz_load_image=fatload mmc 0:1 0x80300000 zImage
xyz_load_initrd=fatload mmc 0:1 0x81600000 initrd.img; setenv initrd_size ${filesize}
xyz_load_dtb=fatload mmc 0:1 0x815f0000 /dtbs/${dtb_file}

video_args=setenv video vram=${vram} omapfb.mode=${defaultdisplay}:${dvimode} omapdss.def_disp=${defaultdisplay}
expansion_args=setenv expansion buddy=${buddy} buddy2=${buddy2}
mmcargs=setenv bootargs console=${console} ${optargs} ${video} root=${mmcroot} rootfstype=${mmcrootfstype} ${expansion}

device_args=run video_args; run expansion_args; run mmcargs

#zImage and initrd.gz:
xyz_mmcboot=run xyz_load_image; run xyz_load_initrd; echo Booting from mmc ...
loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000 0x81600000:${initrd_size}

#zImage only:
#xyz_mmcboot=run xyz_load_image; echo Booting from mmc ...
#loaduimage=run xyz_mmcboot; run device_args; bootz 0x80300000

Umount the boot partition:

sudo umount ./tmp

RootFS Partition

Root File System

Mount your SD card's larger root file system partition (assuming /dev/sdX2) and 'untar' the rootfs into it.

mkdir -p ./tmp
sudo mount /dev/sdX2 ./tmp
sudo tar xfp armel-rootfs-*.tgz -C ./tmp
sudo umount ./tmp

Ubuntu Bugs & Tweaks

Enable Network Access

Modify /etc/network/interfaces

auto eth0
iface eth0 inet dhcp

Manual: From the command line

sudo ifconfig -a
sudo dhclient ethX (or wlanX/etc..)

Additional network setup information can be found HERE.

Advanced

Install Latest Kernel Image

Script File

Latest Stable is: https://github.com/RobertCNelson/stable-kernel

export DIST=oneiric  (options are lucid/maverick/natty/oneiric/precise/squeeze/wheezy)
export ARCH=armel (options are armel/armhf (armhf only for precise))

Beagle/Panda
export BOARD=omap

BeagleBone
export BOARD=omap-psp

wget http://rcn-ee.net/deb/${DIST}-${ARCH}/LATEST-${BOARD}
wget $(cat ./LATEST-${BOARD} | grep STABLE | awk '{print $3}')
/bin/bash install-me.sh

Reboot with your new uImage.

Upgrade X-loader and U-boot

Compatible with old Ax, Bx, and Cx BeagleBoards

Note: Sometimes on these older boards, you just have to clear out the stored U-Boot environment variables in nand to make this script work:

nand erase 260000 20000

Requires MMC card..

git clone git://github.com/RobertCNelson/flasher.git
cd flasher

For the Beagle Bx

sudo ./mk_mmc.sh --mmc /dev/sdX --uboot beagle_bx

For the Beagle Cx

sudo ./mk_mmc.sh --mmc /dev/sdX --uboot beagle_cx
1: Plug Serial Cable in and Start Serial terminal program
2: Place MMC card in Beagle
3: Push and hold the user button
4: Plug-in power
5: Wait for U-Boot countdown to finish, and let off user button
6: Wait for flashing/script to end
7: Power down, remove and reformat MMC card to final OS

If you don't know the location of your SD card:

sudo ./mk_mmc.sh --probe-mmc

You should see something like

Are you sure? I don't see [/dev/idontknow], here is what I do see...

fdisk -l:
Disk /dev/sda: 500.1 GB, 500107862016 bytes <- x86 Root Drive
Disk /dev/mmcblk0: 3957 MB, 3957325824 bytes <- MMC/SD card

mount:
/dev/sda1 on / type ext4 (rw,errors=remount-ro,commit=0) <- x86 Root Partition
  • In this example, we can see via mount, /dev/sda1 is the x86 rootfs, therefore /dev/mmcblk0 is the other drive in the system, which is the MMC/SD card that was inserted and should be used by ./mk_mmc.sh...

SGX Video Acceleration

SGX armel/armhf v3.4.x+

  • Note: This is a still a work in progress, but so far all the basic sgx demos seem to work on my Beagle xM C... Thanks to TI for the special armhf binaries!!! --RobertCNelson 19:48, 17 July 2012 (UTC)
  • Test with: Precise/12.04 armhf demo image with v3.4.5-x1, desktop was lxde via: "sudo apt-get install lxde lxde-core lxde-icon-theme"

Re-Build Kernel and SGX Kernel Modules

git clone git://github.com/RobertCNelson/stable-kernel.git
cd stable-kernel
git checkout origin/v3.6.x -b v3.6.x
./build_kernel.sh (and then follow the directions as the script runs...)

Build SGX modules

./sgx_build_modules.sh

Insert SD card, make sure to modify MMC in system.sh

./tools/install_image.sh

Place SD card into the device and boot...

cd /opt/sgx
sudo tar xf GFX_4.06.00.03_libs.tar.gz
sudo ./install-sgx.sh 

Reboot, check modules (lsmod):

Module                  Size  Used by
bufferclass_ti          5727  0 
omaplfb                11512  0 
pvrsrvkm              165208  2 bufferclass_ti,omaplfb

Blit Test:

ubuntu@omap:/usr/bin/armhf/es5.0$ ./sgx_blit_test 
------------------ SGX 3D Blit test -----------------
----------------------- Start -----------------------
Call PVRSRVConnect with a valid argument:
 OK
Get number of devices from PVRSRVEnumerateDevices:
 OK
.... Reported 1 devices
.... Device Number  | Device Type
            0000    | PVRSRV_DEVICE_ID_SGX
Attempt to acquire device 0:
 OK
Getting SGX Client info
 OK
.... ui32ProcessID:1133
Display Class API: enumerate devices
 OK
PVRSRVEnumerateDeviceClass() returns 1 display device(s)
 OK
Display Class API: open device
 OK
Display Class API: Get display info
 OK
.... Name:PowerVR OMAP Linux Display Driver
.... MaxSwapChains:1
.... MaxSwapChainBuffers:1
.... MinSwapInterval:0
.... MaxSwapInterval:1
Display Class API: enumerate display formats
 OK
 OK
.... Display format 0 - Pixelformat:1
Display Class API: enumerate display dimensions
 OK
 OK
.... Display dimensions 0 - ByteStride:2560 Width:1280 Height:720
Attempt to create memory context for SGX:
 OK
.... Shared heap 0 - HeapID:0x7000000 DevVAddr:0x1000 Size:0x87fe000 Attr:0x2014200
.... Shared heap 1 - HeapID:0x7000001 DevVAddr:0xc800000 Size:0xfff000 Attr:0x2024200
.... Shared heap 2 - HeapID:0x7000002 DevVAddr:0xe400000 Size:0x7f000 Attr:0x2024200
.... Shared heap 3 - HeapID:0x7000003 DevVAddr:0xf000000 Size:0x3ff000 Attr:0x2024200
.... Shared heap 4 - HeapID:0x7000004 DevVAddr:0xf400000 Size:0x4ff000 Attr:0x2014200
.... Shared heap 5 - HeapID:0x7000005 DevVAddr:0xfc00000 Size:0x1ff000 Attr:0x2014200
.... Shared heap 6 - HeapID:0x7000006 DevVAddr:0xdc00000 Size:0x7ff000 Attr:0x2014200
.... Shared heap 7 - HeapID:0x7000007 DevVAddr:0xe800000 Size:0x7ff000 Attr:0x2014200
.... Shared heap 8 - HeapID:0x7000008 DevVAddr:0xd800000 Size:0x3ff000 Attr:0x2024200
.... Shared heap 9 - HeapID:0x7000009 DevVAddr:0x8800000 Size:0x0 Attr:0x2024200
.... Shared heap 10 - HeapID:0x700000a DevVAddr:0x8800000 Size:0x3fff000 Attr:0x2014200
Display Class API: get the system (primary) buffer
 OK
Display Class API: map display surface to SGX
 OK
Attempt to create transfer context for SGX:
 OK
Do a SRCCOPY blit to the bottom right quadrant of the display:
(bottom right quadrant should be red on blue background):
 OK
 OK
Do a SRCCOPY blit to the top left quadrant of the display:
(top left quadrant should be striped (r/g/b/w) on blue background):
 OK
 OK
Do a CUSTOMSHADER blit to the top right quadrant of the display:
(top right quadrant should be yellow):
0xb6acd000 (host) 0xf407000 (device): Device mem for custom shader program
0xb6acb000 (host) 0xf408000 (device): Device mem for texture
USE custom shader program: 0x28841001.c0000000	mov.end o0, sa0
 OK
Do a SRCCOPY blit with COLOUR DOWNSAMPLING from ARGB8888 to RGB565
and then present the RGB565 to the bottom right quadrant of the screen
(bottom right quadrant should be a red gradient):
 OK
 OK
 OK
 OK
Free the off screen surfaces:
 OK
 OK
 OK
 OK
Destroy the transfer context:
 OK
Display Class API: unmap display surface from SGX
 OK
Destroy Device Memory Context
Display Class API: close the device
 OK
Release SGX Client Info:
 OK
Disconnect from services:
 OK
------------------ SGX 3D Blit test -----------------
------------------------ End ------------------------

SGX Legacy armel only upto v3.2.x

NOTE: this only works on BeagleBoard hardware, BeagleBone stuff is in development..

Requirements: stable-kernel (the Demo Images hosted on rcn-ee.net meet this requirement)

 https://github.com/RobertCNelson/stable-kernel

Note: Due to a bug (seems to only effect older Beagle Bx/Cx boards, use v3.0.8-x3 based kernels)

https://github.com/RobertCNelson/stable-kernel/issues/8
oneiric:
wget http://rcn-ee.net/deb/oneiric/v3.0.8-x3/install-me.sh
/bin/bash install-me.sh

SDK unPackage Script

Download the latest version of the "create_sgx_package.sh" script

2.6.37
wget https://github.com/RobertCNelson/stable-kernel/raw/master/create_sgx_package_2.6.37.sh
2.6.38+
wget https://github.com/RobertCNelson/stable-kernel/raw/master/create_sgx_package.sh

Make script executable

chmod a+x ./create_sgx_package.sh

Run script

./create_sgx_package.sh

After Successfully running:

:~/temp$ ls
create_sgx_package.sh
GFX_X_XX_XX_XX_libs.tar.gz                      : -> Copy to Beagle (System Libs)
GFX_Linux_SDK.tar.gz                            : -> Copy to Beagle (DEMO's)
Graphics_SDK_setuplinux_X_XX_XX_XX.bin
SDK
SDK_BIN

Beagle: GFX_*_libs.tar.gz

tar xf GFX_4_00_00_01_libs.tar.gz  (extracts install-SGX.sh and run-SGX.sh)
./install-SGX.sh (copies necessary SGX libs and startup script)
./run-SGX.sh (force run the new init script, or you can just reboot...)

On successful install:

Stopping PVR
Starting PVR
Starting SGX fixup for ES2.x (or ES3.x) (or ES5.x xM)

Reboot for good measure (Maverick's Alpha-1 needs this....)

sudo reboot

Beagle: GFX_Linux_SDK.tar.gz

tar xf GFX_Linux_SDK.tar.gz
cd GFX_Linux_SDK
tar xf OGLES.tar.gz

Test SGX with a DEMO

cd OGLES/SDKPackage/Binaries/CommonX11/Demos/EvilSkull
./OGLESEvilSkull

Trouble Shooting

sudo rm /etc/powervr-esrev
sudo depmod -a omaplfb
sudo /etc/init.d/pvr restart

DSP

gst-dsp

The following Gstreamer elements will be installed:

 $ gst-inspect | grep dsp
 dvdspu:  dvdspu: Sub-picture Overlay
 dsp:  dspdummy: DSP dummy element
 dsp:  dspvdec: DSP video decoder
 dsp:  dspadec: DSP audio decoder
 dsp:  dsph263enc: DSP video encoder
 dsp:  dspmp4venc: DSP MPEG-4 video encoder
 dsp:  dspjpegenc: DSP video encoder
 dsp:  dsph264enc: DSP video encoder
 dsp:  dspvpp: DSP VPP filter
 dsp:  dspipp: DSP IPP

Please note that h264 encoder (dsph264enc) will not work because of missing h264venc_sn.dll64P DSP part. According to this message, it is not available due to a licensing restriction.

Requirements: Kernel built with: "CONFIG_TIDSPBRIDGE=m", for reference, here is what rcn-ee.net's image/deb's are configured for:

voodoo@beagle-xma-512mb:~$ zcat /proc/config.gz | grep TIDSP
CONFIG_TIDSPBRIDGE=m
CONFIG_TIDSPBRIDGE_MEMPOOL_SIZE=0x600000
# CONFIG_TIDSPBRIDGE_DEBUG is not set
CONFIG_TIDSPBRIDGE_RECOVERY=y
# CONFIG_TIDSPBRIDGE_CACHE_LINE_CHECK is not set
CONFIG_TIDSPBRIDGE_WDT3=y
CONFIG_TIDSPBRIDGE_WDT_TIMEOUT=5
# CONFIG_TIDSPBRIDGE_NTFY_PWRERR is not set
# CONFIG_TIDSPBRIDGE_BACKTRACE is not

On the xM: if 3.2.x is too jerky, try 3.4.x and use the create_dsp_package.sh script, as the module changed..

Download the latest version of the "create_dsp_package.sh" script

wget https://github.com/RobertCNelson/stable-kernel/raw/master/create_dsp_package.sh

for 3.4.x+

wget https://raw.github.com/RobertCNelson/stable-kernel/v3.4.x/create_dsp_package.sh

Make script executable

chmod a+x ./create_dsp_package.sh

Package script:

./create_dsp_package.sh

Copy DSP_Install_libs.tar.gz to Beagle

Setup network...

Extract:

tar xf DSP_Install_libs.tar.gz

Install

./install-DSP.sh

Build gst-dsp stuff..

./install-gst-dsp.sh

Start dspbridge (or just reboot)

sudo /etc/init.d/dsp start

Test dspbridge

sudo dsp-test

Playbin:

sudo gst-launch playbin2 uri=file://(file)

Example: (using http://www.bigbuckbunny.org/index.php/download/ 854x480 mp4 )

Note: it seems broken in Ubuntu precise armhf...
sudo gst-launch playbin2 uri=file:///home/USER/big_buck_bunny_480p_surround-fix.avi

Screenshot: (on my xm it's a little jerky at the moment, investigating..)

http://rcn-ee.net/bugs/dsp/dsp_v3.2.1-x2-test.jpg

Xorg omapfb Drivers

By default Ubuntu will try to use the FBDEV video driver, however for the BeagleBoard we can take advantage of a more software optimized driver (still not using the sgx video hardware) using the NEON extensions of the Cortex-A8 core.

cat /var/log/Xorg.0.log | grep FBDEV

(II) FBDEV: driver for framebuffer: fbdev
(II) FBDEV(0): using default device
(II) FBDEV(0): Creating default Display subsection in Screen section
(==) FBDEV(0): Depth 16, (==) framebuffer bpp 16
(==) FBDEV(0): RGB weight 565

Login into Ubuntu and open a new terminal, xorg has to be running..

xvinfo -display :0.0

X-Video Extension version 2.2
screen #0
 no adaptors present

Drivers

Note: These are built with neon optimizations: http://git.debian.org/?p=collab-maint/xf86-video-omapfb.git;a=blob;f=debian/rules;h=c2f0d5391c96c5abb60b1e691ad86bb27e0c17d8;hb=HEAD (line 48/49)

Lucid:

sudo apt-get install xserver-xorg-video-omap3

To verify it was correctly installed, reboot and:

cat /var/log/Xorg.0.log | grep omapfb

(II) LoadModule: "omapfb"
(II) Loading /usr/lib/xorg/modules/drivers//omapfb_drv.so
(II) Module omapfb: vendor="X.Org Foundation"
(II) omapfb: Driver for OMAP framebuffer (omapfb) and external LCD controllers:
(WW) Error opening /sys/devices/platform/omapfb/ctrl/name: No such file or directory
(II) omapfb(0): VideoRAM: 1800KiB (SDRAM)
(II) omapfb(0): Creating default Display subsection in Screen section
(**) omapfb(0): Depth 16, (--) framebuffer bpp 16
(==) omapfb(0): RGB weight 565
(==) omapfb(0): Default visual is TrueColor
(--) omapfb(0): Virtual size is 1280x720 (pitch 1280)
(**) omapfb(0):  Built-in mode "current"
(==) omapfb(0): DPI set to (96, 96)
(II) omapfb(0): DPMS enabled
(II) omapfb(0): Video plane capabilities:
(II) omapfb(0): Video plane supports the following image formats:
(II) omapfb(0): XVideo extension initialized

Login into Ubuntu and open a new terminal, xorg has to be running..

xvinfo -display :0.0

X-Video Extension version 2.2
screen #0
  Adaptor #0: "OMAP XV adaptor"
    number of ports: 1
    port base: 56
    operations supported: PutImage 
    supported visuals:
      depth 16, visualID 0x21
    number of attributes: 1
    etc..

Changing DVI output resolution

Ubuntu 10.10 above defaults to a resolution of 1284x768@16. This is set in the boot.cmd file in the boot partition of the SD card. To change the resolution the DVI output, edit boot.cmd accordingly then recreate the boot.scr file by:

mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "Ubuntu 10.10" -d ./boot.cmd ./boot.scr

Then reboot the BeagleBoard.

S-Video

(For configuring S-Video on Angstrom, click here).

Process for setting up S-Video

S-video is tested to be working on 2.6.35-rc5-dl9. BeagleBoard s-video output has traditionally been enabled by "using bootargs (boot arguments) at uboot". In newer versions of the BeagleBoard, the developers have made things easier by instructing U-Boot to look for a .scr file about a dozen lines long that is called cmd.boot.scr, and then follow said parameters. In Angstrom, no boot.scr file is needed, instead, an even easier system is used, where a simple editable .txt file called uEnv.txt containing these parameters suffices (Env is for "environment"). For some reason, in the Ubuntu download files, typically there a bit of convoluted process where uEnv.txt is called up, uEnv.txt says "Go read conf.boot.scr", and cmd.boot.scr sets up the s-video.

To make cmd.boot.scr, create a text file named cmd.boot, then convert it into a .scr file with mkimage by running the following commands on the terminal:

First, you will probably need to get mkimage with apt-get. Run

   sudo apt-get install mkimage

Next, convert your cmd.boot.scr

   mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n 'Execute uImage' -d boot.cmd boot.scr

Bootargs: make this cmd.boot to set s-video

  • NTSC
    omapfb.mode=tv:ntsc 
    omapdss.def_disp=tv

Bootargs that has been validated.

    setenv bootargs 'console=tty0 console=ttyO2,115200n8 root=/dev/mmcblk0p2 rootwait ro vram=12M omapfb.mode=tv:ntsc omapdss.def_disp=tv 
    fixrtc buddy=unknown'

Screen cutoff problem

NTSC resolution is supposed to be 640x480. However the edge bands around the TV screen differ from TV to TV. Output of fbset shown below:

   mode "720x482-30"
        # D: 13.500 MHz, H: 15.734 kHz, V: 29.970 Hz
        geometry 720 482 720 482 32
        timings 74074 16 58 6 31 64 6
        rgba 8/16,8/8,8/0,0/0
   endmode

Depending on your TV device, and what desktop you are running a certain amount of screen cutoff is likely to occur. This is called overscan. Typically, around 5-10% of the left and right edges of display are off the screen (using Ubuntu with xfce). This seems to be due to the fact that there is only one display resolution that is set for NTSC: 720 X 482. It is not possible to change this setting in the xfce4 Settings Manager like one would normally be able to do, because other options are greyed out/do not exist. Normally, even if the Settings Manager did not allow for it, a different resolution setting could be obtained by editing the xorg.conf file in /etc/X11/xorg.conf-4, or some similar place. HOWEVER there is no xorg.conf file in the Beagle version of xfce. xrandr shows the display is set to the minimum of 720x574. Adding an xorg.conf does not fix the problem, because Beagle takes its (analog) display resolution settings directly from the display driver, where 720 X 480 (720 X 574 for PAL ) is hard coded in.

An inelegant but usable workaround for the xfce desktop environment is simply to create vertical and horizontal panels that fill up the space that is cut off on the screen. This is not a complete solution, but at least it will prevent maximized windows from going off into nowhere land.

Truly fixing this would involve going into the display driver and reprogramming it to include additional S-video settings besides just NTSC and PAL. Specifically, to make the whole framebuffer fit on the screen you would need to adjust the overlay in the display driver, the OMAP DSS2. (Didn't test this yet. Some pointers from the driver's documentation below)

   /sys/devices/platform/omapdss/overlay? directory:
   enabled		0=off, 1=on
   input_size		width,height (ie. the framebuffer size)
   manager		Destination overlay manager name
   name
   output_size		width,height
   position		x,y
   screen_width	width
   global_alpha   	global alpha 0-255 0=transparent 255=opaque

Building Kernel

https://github.com/RobertCNelson/stable-kernel

Download SRC

git clone git://github.com/RobertCNelson/stable-kernel.git

Build kernel

./build_kernel.sh

Optional building the deb file

./build_deb.sh


Swapfile

Using a File for Swap Instead of a Partition

On the Bealgeboard you should expect to need a swap file given the limitation of how much RAM they have (between 256 MB and 512 MB). Some system programs like apt-get will only run properly when some swap space is present (due to 256 MB not being enough RAM).

Some images such as those from Linaro.org do not come with a swap partition or any swap space allocated.

Under Linux swap space can be either a dedicated partition or a single file. Both can be mounted as swap which the OS can access.

Creating a Swapfile

The following commands will create a 1 gigabyte file, lock access to only root, format it as swap and then advertise it to the OS.

sudo mkdir -p /var/cache/swap/   
sudo dd if=/dev/zero of=/var/cache/swap/swapfile bs=1M count=1024
sudo chmod 0600 /var/cache/swap/swapfile 
sudo mkswap /var/cache/swap/swapfile 
sudo swapon /var/cache/swap/swapfile 

To ask the OS to load this swapfile on each start up, edit the /etc/fstab file to include the following additional line:

/var/cache/swap/swapfile    none    swap    sw    0   0

To verify that the swapfile is accessilble as swap to the OS, run "top" of "htop" at a console.

Ubuntu Software

Wi-Fi Networking (command line)

/etc/network/interfaces

It is possible and relatively easy to configure a Wi-Fi card from the command line.

You will need to edit the /etc/network/interfaces file. There are several guides available via Google.

This is a particularly useful guide http://ubuntuforums.org/showthread.php?t=202834

A sample /etc/network/interfaces file for a WPA2 encrypted access point is:

auto lo
iface lo inet loopback
auto wlan0
iface wlan0 inet dhcp
wpa-driver wext
wpa-ssid <NAME OF AP>
wpa-ap-scan 1
wpa-proto RSN
wpa-pairwise CCMP
wpa-group CCMP
wpa-key-mgmt WPA-PSK
wpa-psk < INSERT KEY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX>

Your Wi-Fi card will automatically load these settings on start up and give network access.

Lightweight window managers

If you intend to use Ubuntu on the BeagleBoard you can install JWM or IceWM to improve performance.

JWM in particular uses little RAM. On a BeagleBoard with 256 MB, using JWM will leave about 60 MB free to run applications in.

Web Apps

Midori

Given that the BeagleBoard has fewer resources than a desktop a light-weight browser is more responsive. Midori is a light-weight browser that still supports flash, etc. It is available from the standard repositories. http://en.wikipedia.org/wiki/Midori_%28web_browser%29

Surveillance

Motion

If you have a video source (webcam, IP cam, etc.) which appears as /dev/video0, etc. then you can use the Linux surveillance software "motion" to monitor the video stream and record periods of activity.

Motion is also available from the standard repositories. http://www.debian-administration.org/article/An_Introduction_to_Video_Surveillance_with_%27Motion%27 Using a 960x720 resolution webcam with a 15 fps rate under the UVC driver the Rev C BeagleBoard under Xubuntu reports ~60% CPU utilisation.

To make the BeagleBoard automatically start recording on boot do the following:

  • Auto Login - run "gdmsetup" from a terminal and select a user to automatically login
  • Sessions - make sure you don't save any previous X Windows sessions so that it doesn't prompt you for which one you want
  • motion.conf - amend /etc/motion/motion.conf to the settings you want (that is, video output directory, record only video, record in MPEG-4, set frame rate, etc). Do this with "sudo medit /etc/motion/motion.conf" at a prompt.
  • Boot script - create a new script in /etc/rc2.d called "S65motion_client" and set permissions appropriately ("sudo chmod 777 /etc/rc2.d/S65motion_client"). Then edit the file so it has the following text in it:
#! /bin/sh
/usr/bin/motion -c /etc/motion/motion.conf

This will now launch the motion client as root when you boot up.

Also note that unless your BeagleBoard can remember the time (battery backed up clock installed) the timestamps will not be correct until you update the time. If your BeagleBoard has an Internet connection this can be achieved with the ntpdate application.

Robotics

ROS

Willow Garage hosts the open source Robotic Operating System (ROS). Whilst it is natively supported in Ubuntu, the official packages are only for the x86 platform. ROS can be installed from source and is generally easy to do so (although slow).

Following the instructions from here will build and install ROS on your BeagleBoard:

http://www.ros.org/wiki/cturtle/Installation/Ubuntu/SVN

You will need an Internet connection for your BeagleBoard for these scripts to work.

For more information about ROS, see www.ros.org.