BeagleBone Community

From eLinux.org
Revision as of 20:56, 2 June 2012 by Morgaine (talk | contribs) (Gentoo)
Jump to: navigation, search


BeagleBone

This page collects information about BeagleBoard.org's TI AM335x ARM-based BeagleBone board.


Events

Description

The BeagleBone is a low-cost, high-expansion board from the BeagleBoard product line. It uses the TI AM3358/9 SoC based on an ARM Cortex-A8 processor core using the ARMv7-A architecture. It is similar in purpose to earlier BeagleBoards, and can be used either standalone or as a USB or Ethernet-connected expansion for a BeagleBoard or any other system. The BeagleBone is small even by BeagleBoard standards yet still provides much of the performance and capabilities of the larger BeagleBoards.

BeagleBone ships with a 4GB micro-SD card preloaded with the Angstrom ARM Linux distribution.

The board uses a TI TPS65217B PMIC to generate stable supply voltages regardless of input power variation. +5V DC power can be supplied to the BeagleBone through a barrel connector or from the mini-USB, both of which are located near the large RJ45 Ethernet connector.

The mini-USB type-A OTG/device client-mode socket is multi-functional. In addition to providing an alternative source of power, it gives access to an on-board front-end two-port USB client-side hub. (This is not related to the separate host-mode USB socket described later). One port of the hub goes directly to the USB0 port of the TI AM3358/9 SoC, while the other port connects to a dual-port FTDI FT2232H USB-to-serial converter to provide board-to-external-host serial communications and/or JTAG debugging. The BeagleBone's Linux serial console is available through this USB serial connection.

The SoC's USB0 connection to the front-end hub works in one of two modes, and you can toggle between them at any time: it either presents the SD card as a mountable USB storage device to the host, or it provides an Ethernet-over-USB networking interface which yields a simple method of quick-start. The Ethernet-over-USB facility is additional to the BeagleBone's normal 10/100 Ethernet interface, which is directly implemented in the SoC rather than hanging off USB as in some other designs. Full IPv4 and IPv6 networking is provided by the supplied Linux system out of the box.

In addition to the USB OTG Device or client-mode facilities already described, BeagleBone also provides one host-mode USB type-A socket on the other end of the board. This is driven from the USB1 connection on the AM3358/9 SoC, and provides access to USB host peripherals such as mice, keyboards, storage, and wifi or Bluetooth dongles, or a USB hub for further expansion.

Specifications

  • Up to 720-MHz superscalar ARM Cortex-A8
  • 256-MB DDR2 RAM
  • 10/100 Ethernet RJ45 socket, IPv4 and IPv6 networking
  • MicroSD slot and 4GB microSD card supplied
  • Preloaded with Angstrom ARM Linux Distribution
  • Single USB 2.0 type A host port
  • Dual USB hub on USB 2.0 type mini-A OTG device port
  • On-board USB-to-serial/JTAG over one shared USB device port
  • Storage-over-USB or Ethernet-over-USB on other USB device port
  • Extensive I/O: 2 I2C, 5 UART, SPI, CAN, 66 GPIO, 8 PWM, 8 ADC
  • +5V DC power from barrel connector or USB device port
  • Two 46-pin 3.3-V peripheral headers with multiplexed LCD signals
  • Board size: 3.4" × 2.1" (86.4mm x 53.3mm) -- fits in an Altoid tin

Expansion Boards and Accessories

Capes

A BeagleBone Cape is an expansion board which can be plugged into the BeagleBone's two 46-pin dual-row Expansion Headers and which in turns provides similar headers onto which further capes can be stacked. Up to four capes at a time can be stacked on top of a BeagleBone. An expansion board which can be fitted only at the top of a stack of capes (usually for physical reasons) is a special case of "cape", but this usage is common for display expansion boards such as LCDs (see next section).

Capes are required to provide a 32Kbyte I2C-addressed EEPROM which holds board information such as board name, serial number and revision, although this is typically omitted on simple prototyping capes. Capes are also expected to provide a 2-position DIP switch to select their address in the stack, although this too is often omitted in prototyping capes.

The Capes Registry seeks to index all existing capes and cape concepts, including private projects. A registration page is available to help add capes to the list.

This section lists only those capes which are available commercially or which are close to a production release, as well as open hardware designs.

LCD Displays and Other Expansions

LCD displays for the BeagleBone are typically implemented as capes which plug in as the top board in a stack of capes, for reasons of visibility. Such displays are often larger than the BeagleBone itself, so the normal physical relationship in which a daughterboard is smaller than its host board is inverted. In this arrangement it is the expansion board that provides the physical support for the BeagleBone.

  • BeadaFrame
    BeadaFrame with BeagleBone companion board
Hardware Features:
  • 7" 800x480 TFT LCD screen
  • PWM Backlight control
  • Resistive touch panel
  • Plastic frame
  • 256MB Nand flash(K9F2G08)
  • RS232 serial ports(UART1 w/ CTS&RTS)
  • Stereo audio out
  • Micro-phone in
  • 6 x USER buttons
  • PWM Beeper
  • RTC with Battery(DS1302)
3.5" TFT LCD screen, resolution 320x240, 4-wire resistive touchscreen, seven buttons at finger-friendly positions.
7" TFT LCD screen, resolution 800x480, 4-wire resistive touchscreen, rear mount for BeagleBone and capes.

Cases

BeagleBone Operating Systems

BeagleBone's default operating system is Angstrom, which ships with the board. This section provides basic information on Angstrom and other operating systems commonly used on BeagleBone.

Angstrom

  • Home site: http://www.angstrom-distribution.org/
  • Mailing lists: angstrom-distro-devel and angstrom-distro-users
  • IRC channel: irc://irc.freenode.net/#angstrom
  • Does not provide a forum, intentionally.
  • Uses Busybox, which has both pros and cons. Advantages include requiring less storage space and a smaller memory footprint for many common utilities, which also improves system startup time and performance. The main disadvantages stem from those utilities not mirroring exactly their full-size counterparts. This may be annoying for some, and may also break shell scripts that rely on standard functionality.
  • Uses connman for network connection management. No documentation is provided.
  • Does not include man(1) nor any man pages by default, nor debugging utilities like strace(1) and tcpdump(1) which can be helpful in getting started.

Debian

Ubuntu

Fedora

ArchLinux

Gentoo

Gentoo is a source-based meta-distribution of Linux. Instead of distributing a standard system image built with predefined options, Gentoo gives each user the means to create their own customized system that doesn't contain unused bloat and with minimum dependencies. Upgrades are incremental and under user control, so a Gentoo system is normally always up-to-date and wholesale upgrades are avoided. Being a source-based system, the downside of Gentoo for low-power ARM systems is very long install times for large applications. Cross-compilation on x86 machines and distcc can overcome this problem, but they add complexity.

Sabayon

Buildroot

Nerves Erlang/OTP

Board recovery

Software Development

Software development on the BeagleBone is normally no different to any other Linux platform, and typically varies with language and with the IDE used, if any. This section deals only with development issues that are specific to BeagleBone, or mostly so.

Cloud9 IDE and Bonescript

..... description here .....

BeagleBone JTAG Debugging

..... description here .....

FAQ

For BeagleBoard frequently asked questions (FAQ) see community FAQ and "official" BeagleBoard.org FAQ.

Links

Home page and Community

Tutorials and Videos

Manuals and resources

Errata

Subpages

<splist

parent=
showparent=no
sort=desc
sortby=title
liststyle=ordered
showpath=no
kidsonly=no
debug=0

/>