ECE497 Project Electric Car

From eLinux.org
Revision as of 19:02, 18 November 2013 by Yoder (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

thumb‎ Embedded Linux Class by Mark A. Yoder


Team members: Junxuan Hou, Zhen Wei

Grading Template

I'm using the following template to grade. Each slot is 10 points. 0 = Missing, 5=OK, 10=Wow!

07 Executive Summary - Not up to date
09 Packaging - Nice sequence of photos documenting the assembly. Show where car came from.
09 Installation Instructions - Good
09 User Instructions - Good
09 Highlights - Nice video, but add audio to tell what's happening.
08 Theory of Operation - Some more details would be nice.
09 Work Breakdown - Also report the time spent building the car
09 Future Work - Good
09 Conclusions - OK
10 Demo
00 Late
Comments: I'm looking forward to seeing this.

Score:  88/100

Executive Summary

Electric Car.jpeg (Nice picture)

This project interfaces the Beaglebone with motor-based electronic mini-car. The gpio pins are used to control the motor on the car to remote it. Some additional interfaces, such as a IR sensor to control the moving direction of the car, and an analog input to control the speed of the car, are considered to be done based on the progress of the project.

Currently we have the small car which can be controlled by keyboard, or IR sensor. With the keyboard controlling, the car can go foreword and backward, make a turn to both right and left. With the IR sensor controlling, the car can keep space before the barrier in front of item.

At first, we use the H-bridge to control four motors which connect to four wheels for the car. And use the GPIO pins to control this H-bridge. And then use a analog input pin to get the signal feedback from the IR sensor.

Depending on the time, in the feature time, there are lots of works can be done for this robot car. (This isn't up to date)

Packaging

Parts List:

Parts Quantity
Robot Car Kits (Give link) 1
Beaglebone 1
sharp 2d120x f IR sensor 1
L293 H-Bridge Chip 1
1N4004 Diodes 8
100 ohm Resistors 2
On/Off Switch 1

Packaging:

Soldering the L293 H-bridge chip, rsistors, and diodes together. And put the control board on the car.

Connect the motor to the control board.

Glue the IR Sensor in front of the car.

Connect both on/off switch and IR sensor to the beaglebone.

wire eveything to the beaglebone.

Our Electric Robot Car is ready to go.

Installation Instructions

The Github Link for this project is https://github.com/weizhen1883/Electric-Car.git.

  1. connect the H-bridge signal pin to P9_11(LeftFront) P9_12(LeftBack) P9_13(RightFront) P9_14(RightnBack)
  2. connect the IR sensor signal to P9_35 AIN6
  3. connect both H-bridge and IR sensor power to sys_5V and GND
  4. power the beaglebone
  5. run make to get ECar and GoForwordwithSensor files
  6. run ./ECar to work with keyboard controlling
  7. run ./GoForwordwithSensor to work with IR Sensor controlling

User Instructions

  1. Login to the Beaglebone and open the project folder.
  2. $beagle ./ECar to run the keyboard control model.
  3. $beagle ./GoForwordwithSensor to run the IR sensor control model.

At the keyboard control model

  • 'w'----go forward
  • 'x'----go backward
  • 'a'----turn left
  • 'd'----turn right
  • 's'----stop

Highlights

At this time, this Electric Car can only controlled by keyboard, and run forward and backward to keep the space between item and the barrier in front of item.

The YouTube video to show the demo.

Theory of Operation

EcCarDiagram.jpeg

Work Breakdown

The major tasks in your project is to make the car can sensing the distance in the front, and when the distance is too small it will go backward, when it is too big, it will go forward. If the distance is just within the range, the car will stop.

Future Work

For this project, in the future there are lots of works can be done.

First, to add the battery package, to make the robot work without cable connected.
Second, add more IR sensors to make it can run and make the turn and also go pass the barriers.
Third, it should be possible to add the GPS sensor to sensing the location, and make the robot go around our campus.

Conclusions

For this project, we just do a very sample demo with beaglebone, we can do a lot of things in the future. Anyway, at this time, we make the car run by beaglebone controlling. We get our milestone.




thumb‎ Embedded Linux Class by Mark A. Yoder