Please note that User Registration has been temporarily disabled due to a recent increase in automated registrations. If anyone needs an account, please request one here: RequestAccount. Thanks for your patience!--Wmat (talk)
Please email User:Wmat if you experience any issues with the Request Account form.

Difference between revisions of "KR:BeagleBone"

From eLinux.org
Jump to: navigation, search
(Created page with "Category: Linux Category: OMAP Category:Development Boards Category: BeagleBoard Category: BeagleBone [[File:BeagleBone_256x249.jpg|320px|thumb|right|BeagleB...")
 
Line 11: Line 11:
 
<br>
 
<br>
 
= 이벤트 =
 
= 이벤트 =
* 진행중인 2009: [[BeagleBoard/contest|비글 스폰서 프로젝트 프로그램]] - 참신한 프로젝트를 추가하고 실현할 수 있게 무료로 비글보드를 얻으세요!
+
* 진행중인 2009: [[BeagleBoard/contest|비글 스폰서 프로젝트 프로그램]] - 참신한 프로젝트를 추가하고 무료로 비글보드를 얻어가세요!
  
 
= 설명 =
 
= 설명 =
  
'''비글본(BeagleBone)''' [http://beagleboard.org/ BeagleBoard] 제품 라인으로 저렴하며 높은 확장성을 가진다. [http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344d/DDI0344D_cortex_a8_r2p1_trm.pdf ARM Cortex-A8] 프로세서 코어를 기반으로 [http://www.ti.com/am335x TI AM3358/9] SoC를 사용한다. [http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#v7AR ARMv7-A] 구조를 기반으로 한다. 초기 비글보드의 목적과 유사해서 독립적으로 사용하거나 비글보드나 다른 시스템에 이더넷 연결 확장하여 사용할 수 있다. 비글본은 표준 비글보드도 작으면서도 상당 부분 성능과 용량을 제공한다.
+
'''비글본(BeagleBone)'''[http://beagleboard.org/ BeagleBoard] 제품 라인으로 저렴하며 높은 확장성을 가진다. [http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344d/DDI0344D_cortex_a8_r2p1_trm.pdf ARM Cortex-A8] 프로세서 코어를 기반으로 [http://www.ti.com/am335x TI AM3358/9] SoC를 사용한다. [http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#v7AR ARMv7-A] 구조를 기반으로 한다. 초기 비글보드의 목적과 유사해서 독립적으로 사용하거나 비글보드나 다른 시스템에 이더넷 연결 확장하여 사용할 수 있다. 비글본은 표준 비글보드도 작으면서도 상당한 성능과 용량을 제공한다.  
 
+
The BeagleBone is small even by BeagleBoard standards yet still provides much of the performance and capabilities of the larger BeagleBoards.
+
  
 
비글본은 4GB 마이크로 SD카드에 [http://www.angstrom-distribution.org/ Angstrom] ARM Linux 배포판과 함께 제공된다.
 
비글본은 4GB 마이크로 SD카드에 [http://www.angstrom-distribution.org/ Angstrom] ARM Linux 배포판과 함께 제공된다.
  
The board uses a [http://www.ti.com/product/tps65217 TI TPS65217B PMIC] to generate stable supply voltages regardless of input power variation. +5V DC power can be supplied to the BeagleBone through a barrel connector or from the mini-USB, both of which are located near the large RJ45 Ethernet connector.
+
입력 전력이 가변적이더라도 안정적인 전압을 생성할 수 있도록 [http://www.ti.com/product/tps65217 TI TPS65217B PMIC]를 사용한다. +5V DC는 배럴 컨넥터(barrel connector)나 미니-USB를 통해 공급된다. 이 둘은 모두 RJ45 이더넷 컨넥터 근처에 위치하고 있다.
  
 
The mini-USB type-A OTG/device '''client-mode''' socket is multi-functional. In addition to providing an alternative source of power, it gives access to an on-board front-end two-port USB client-side hub. (This is not related to the separate '''host-mode''' USB socket described later). One port of the hub goes directly to the '''USB0''' port of the TI AM3358/9 SoC, while the other port connects to a dual-port [http://www.ftdichip.com/Products/ICs/FT2232H.htm FTDI FT2232H] USB-to-serial converter to provide board-to-external-host serial communications and/or JTAG debugging. The BeagleBone's Linux serial console is available through this USB serial connection.
 
The mini-USB type-A OTG/device '''client-mode''' socket is multi-functional. In addition to providing an alternative source of power, it gives access to an on-board front-end two-port USB client-side hub. (This is not related to the separate '''host-mode''' USB socket described later). One port of the hub goes directly to the '''USB0''' port of the TI AM3358/9 SoC, while the other port connects to a dual-port [http://www.ftdichip.com/Products/ICs/FT2232H.htm FTDI FT2232H] USB-to-serial converter to provide board-to-external-host serial communications and/or JTAG debugging. The BeagleBone's Linux serial console is available through this USB serial connection.

Revision as of 11:39, 5 August 2012

BeagleBone

이 페이지는 BeagleBoard.orgTI AM335x ARM을 기반으로 하는 BeagleBone의 정보를 모았다.


이벤트

설명

비글본(BeagleBone)BeagleBoard 제품 라인으로 저렴하며 높은 확장성을 가진다. ARM Cortex-A8 프로세서 코어를 기반으로 TI AM3358/9 SoC를 사용한다. ARMv7-A 구조를 기반으로 한다. 초기 비글보드의 목적과 유사해서 독립적으로 사용하거나 비글보드나 다른 시스템에 이더넷 연결 확장하여 사용할 수 있다. 비글본은 표준 비글보드도 작으면서도 상당한 성능과 용량을 제공한다.

비글본은 4GB 마이크로 SD카드에 Angstrom ARM Linux 배포판과 함께 제공된다.

입력 전력이 가변적이더라도 안정적인 전압을 생성할 수 있도록 TI TPS65217B PMIC를 사용한다. +5V DC는 배럴 컨넥터(barrel connector)나 미니-USB를 통해 공급된다. 이 둘은 모두 RJ45 이더넷 컨넥터 근처에 위치하고 있다.

The mini-USB type-A OTG/device client-mode socket is multi-functional. In addition to providing an alternative source of power, it gives access to an on-board front-end two-port USB client-side hub. (This is not related to the separate host-mode USB socket described later). One port of the hub goes directly to the USB0 port of the TI AM3358/9 SoC, while the other port connects to a dual-port FTDI FT2232H USB-to-serial converter to provide board-to-external-host serial communications and/or JTAG debugging. The BeagleBone's Linux serial console is available through this USB serial connection.

The SoC's USB0 connection to the front-end hub works in one of two modes, and you can toggle between them at any time: it either presents the SD card as a mountable USB storage device to the host, or it provides an Ethernet-over-USB networking interface which yields a simple method of quick-start. The Ethernet-over-USB facility is additional to the BeagleBone's normal 10/100 Ethernet interface, which is directly implemented in the SoC rather than hanging off USB as in some other designs. Full IPv4 and IPv6 networking is provided by the supplied Linux system out of the box.

In addition to the USB OTG Device or client-mode facilities already described, BeagleBone also provides one host-mode USB type-A socket on the other end of the board. This is driven from the USB1 connection on the AM3358/9 SoC, and provides access to USB host peripherals such as mice, keyboards, storage, and wifi or Bluetooth dongles, or a USB hub for further expansion.

Specifications

  • Up to 720-MHz superscalar ARM Cortex-A8
  • 256-MB DDR2 RAM
  • 10/100 Ethernet RJ45 socket, IPv4 and IPv6 networking
  • MicroSD slot and 4GB microSD card supplied
  • Preloaded with Angstrom ARM Linux Distribution
  • Single USB 2.0 type A host port
  • Dual USB hub on USB 2.0 type mini-A OTG device port
  • On-board USB-to-serial/JTAG over one shared USB device port
  • Storage-over-USB or Ethernet-over-USB on other USB device port
  • Extensive I/O: 2 I2C, 5 UART, SPI, CAN, 66 GPIO, 8 PWM, 8 ADC
  • +5V DC power from barrel connector or USB device port
  • Two 46-pin 3.3-V peripheral headers with multiplexed LCD signals
  • Board size: 3.4" × 2.1" (86.4mm x 53.3mm) -- fits in an Altoid tin

Expansion Connectors

The BeagleBone provides two 46-pin dual-row expansion connectors "P9" and "P8" which are also known as "Expansion A" and "Expansion B", respectively. The location and pinout of these connectors is illustrated below (click tables to enlarge). All signals on expansion headers are 3.3V except where indicated otherwise.

P9 and P8 - Each 2x23 pins

P9 Header

BeagleBone P9 + P8 P8 Header


In addition to the two large headers above, a small 10-pin dual-row connector provides "P6" provides a "PMIC Expansion" that brings out some additional signals from the TPS65217B Power Management IC, using the following pinout:

P6 - 2x5 pins

P6 MPIC Expansion Header

IMPORTANT

This diagram of P6 provides an UNDERSIDE PINOUT view.

It is therefore laterally inverted relative to the photograph.

To obtain the top-side pinout that corresponds to the physical orientation shown in the photograph, swap the two rows of pins so that odd-numbered pins are on the left of even-numbered pins.

Expansion Boards and Accessories

Capes

A BeagleBone Cape is an expansion board which can be plugged into the BeagleBone's two 46-pin dual-row Expansion Headers and which in turns provides similar headers onto which further capes can be stacked. Up to four capes at a time can be stacked on top of a BeagleBone. An expansion board which can be fitted only at the top of a stack of capes (usually for physical reasons) is a special case of "cape", but this usage is common for display expansion boards such as LCDs (see next section).

Capes are required to provide a 32Kbyte I2C-addressed EEPROM which holds board information such as board name, serial number and revision, although this is typically omitted on simple prototyping capes. Capes are also expected to provide a 2-position DIP switch to select their address in the stack, although this too is often omitted in prototyping capes.

The Capes Registry seeks to index all existing capes and cape concepts, including private projects. A registration page is available to help add capes to the list.

This section lists only those capes which are available commercially or which are close to a production release, as well as open hardware designs.

LCD Displays and Other Expansions

LCD displays for the BeagleBone are typically implemented as capes which plug in as the top board in a stack of capes, for reasons of visibility. Such displays are often larger than the BeagleBone itself, so the normal physical relationship in which a daughterboard is smaller than its host board is inverted. In this arrangement it is the expansion board that provides the physical support for the BeagleBone.

Expanded Hardware Features:
  • 7" 800x480 TFT LCD screen
  • PWM Backlight control
  • Resistive touch panel
  • Plastic frame
  • 256MB Nand flash(K9F2G08)
  • RS232 serial ports(UART1 w/ CTS&RTS)
  • Stereo audio out
  • Micro-phone in
  • 6 x USER buttons
  • PWM Beeper
  • RTC with Battery(DS1302)
3.5" TFT LCD screen, resolution 320x240, 4-wire resistive touchscreen, seven buttons at finger-friendly positions.
7" TFT LCD screen, resolution 800x480, 4-wire resistive touchscreen, rear mount for BeagleBone and capes.

Cases

BeagleBone Operating Systems

BeagleBone's default operating system is Angstrom, which ships with the board. This section provides basic information on Angstrom and other operating systems commonly used on BeagleBone. This information may help in making a preliminary choice, but full details should be obtained from the home sites.

Angstrom

Ångström was started by a small group of people who worked on the OpenEmbedded, OpenZaurus and OpenSimpad projects to unify their effort to make a stable and user-friendly distribution for embedded devices like handhelds, set top boxes and network-attached storage devices. Ångström can scale down to devices with only 4MB of flash storage.

The Angstrom community does not provide a forum, intentionally.

Angstrom uses Busybox for many key utilities, which has both pros and cons. Advantages include requiring less storage space and a smaller memory footprint for many common utilities, which also improves system startup time and performance. The main disadvantages stem from those utilities not mirroring exactly their full-size counterparts. These differences can be annoying if one is used to standard behavior, and may also break shell scripts that rely on portable functionality.

Angstrom uses connman for network connection management, but no documentation is available for this currently. Also, man(1) and man pages are not provided by default, nor debugging utilities like strace(1) and tcpdump(1). Getting started may therefore present difficulties, depending on experience.

Debian

The ARM EABI port is the default port of the standard Debian distribution of Linux for the ARM architecture ("armel"). EABI ("Embedded ABI") is actually a family of ABIs, and one of the "subABIs" is the GNU EABI for Linux which is used for this port. A newer port targeted at newer hardware with another ABI ("armhf") is currently under development and is expected to ship with Debian 7.0 (Wheezy).

The Debian Project is strongly committed to software freedom, and has a long pedigree and a good reputation.

Ubuntu

The vision for Ubuntu is part social and part economic: free software, available free of charge to everybody on the same terms, and funded through a portfolio of services provided by Canonical.

The first version of Ubuntu was based on the GNOME desktop, but has since added a KDE edition, Kubuntu, and a server edition. All of the editions of Ubuntu share common infrastructure and software. In recent years, special emphasis has been placed on netbooks for lightweight, connected, mobile computing, and on the cloud as a new architecture for data centres.

Fedora

The Fedora Project is sponsored by Red Hat, which invests in its infrastructure and resources to encourage collaboration and incubate innovative new technologies. Some of these technologies may later be integrated into Red Hat products. They are developed in Fedora and produced under a free and open source license from inception, so other free software communities and projects are free to study, adopt, and modify them.

Red Hat has been a major player since the earliest days of Linux distributions, and has earned a good reputation for solidity which continues in Fedora. The Fedora ARM initiative is very active (see mailing list).

ArchLinux

Arch Linux for BeagleBone is a version of the Arch Linux ARM distribution. This carries forward the Arch Linux philosophy of simplicity and user-centrism, targeting and accommodating competent Linux users by giving them complete control and responsibility over the system. Instructions are provided to assist in navigating the nuances of installation on the varied ARM platforms; however, the system itself will offer little assistance to the user.

The entire distribution is on a rolling-release cycle that can be updated daily through small packages instead of huge updates on a defined release schedule. Most packages are unmodified from what the upstream developer originally released.

Gentoo

Gentoo is a source-based meta-distribution of Linux. Instead of distributing a standard system image built with predefined options, Gentoo gives each user the means to create their own customized system that doesn't contain unused bloat and with minimum dependencies. Upgrades are incremental and under user control, so a Gentoo system is normally always up-to-date and wholesale upgrades are avoided.

Being a source-based system, the downside of Gentoo for low-power ARM systems is very long install times for large applications. Cross-compilation on x86 machines and distcc can overcome this problem, but they add complexity.

Sabayon

Sabayon Linux uses the mechanisms of Gentoo to create a pre-configured Linux distribution that can be installed as rapidly as a normal binary distribution, but still retains the benefits of Gentoo's source-based package management. Sabayon on Intel/AMD also provides the Entropy binary package management system, which could in principle greatly ease installation of packages on resource-constrained embedded Linux devices, but this is not yet available for ARM.

Although it is still early days for Sabayon on ARM (and hence on BeagleBone), there is regular progress reported on lxnay's blog, and contributions from the community would probably accelerate the work.

Buildroot

Buildroot is a set of Makefiles and patches that makes it easy to generate a complete embedded Linux system. Buildroot can generate any or all of a cross-compilation toolchain, a root filesystem, a kernel image and a bootloader image. Buildroot is useful mainly for people working with small or embedded systems, using various CPU architectures (x86, ARM, MIPS, PowerPC, etc.) : it automates the building process of your embedded system and eases the cross-compilation process.

The resulting root filesystem is mounted read-only, but other filesystems can be mounted read/write for persistence. Although user accounts can be created, in practice almost everything is done as root. Buildroot uses no package manager. Instead, package selection is managed through make menuconfig.

Nerves Erlang/OTP

Erlang is a programming language used to build massively scalable soft realtime systems with high availability requirements (5-9’s). Some of its uses are in telecoms, banking, e-commerce, computer telephony and instant messaging. Erlang’s runtime system has built-in support for concurrency, distribution and fault tolerance.

OTP is a set of Erlang libraries and design principles providing middle-ware to develop these systems. It includes its own distributed database, applications to interface towards other languages, debugging and release handling tools.

The Nerves project provides an embedded Linux-based environment for running Erlang and an easy-to-use API to access common I/O interfaces, based on Buildroot (see above). If you are interested in running an Erlang node on a low power ARM-based board such as BeagleBone, this project can get you started.

Board recovery

Software Development

Software development on the BeagleBone is normally no different to any other Linux platform, and typically varies with language and with the IDE used, if any. This section deals only with development issues that are specific to BeagleBone, or mostly so.

Cloud9 IDE and Bonescript

..... description here .....

BeagleBone JTAG Debugging

..... description here .....

FAQ

For BeagleBoard frequently asked questions (FAQ) see community FAQ and "official" BeagleBoard.org FAQ.

Links

Home page and Community

Tutorials and Videos

Manuals and resources

Errata

Subpages

<splist parent= showparent=no sort=desc sortby=title liststyle=ordered showpath=no kidsonly=no debug=0

/>