Difference between revisions of "RPi Screens"

From eLinux.org
Jump to: navigation, search
(RGB analog/VGA)
(RGB analog/VGA)
Line 33: Line 33:
  
 
Note that any conversion hardware that converts HDMI/DVI-D signals to VGA (or DVI-A) signals may come with either an external PSU, or expects power can be drawn from the HDMI port. In the latter case the device may initially appear to work, but there will be a problem, as the HDMI specs only provide in a maximum of 50mA (@ 5 Volt) from the HDMI port, but all of these adapters try to draw much more, up-to 500mA, in case of the R-PI there is a limit of 200mA that can be drawn safely, as 200mA is the limit for the BAT54 diode (D1) on the board. Any HDMI to VGA adapter without external PSU might work for a time, but then burn out D1, therefore '''Do not use HDMI converters powered by the HDMI port!'''
 
Note that any conversion hardware that converts HDMI/DVI-D signals to VGA (or DVI-A) signals may come with either an external PSU, or expects power can be drawn from the HDMI port. In the latter case the device may initially appear to work, but there will be a problem, as the HDMI specs only provide in a maximum of 50mA (@ 5 Volt) from the HDMI port, but all of these adapters try to draw much more, up-to 500mA, in case of the R-PI there is a limit of 200mA that can be drawn safely, as 200mA is the limit for the BAT54 diode (D1) on the board. Any HDMI to VGA adapter without external PSU might work for a time, but then burn out D1, therefore '''Do not use HDMI converters powered by the HDMI port!'''
The solution is to either only use externally powered converters, or to replace D1 with a sturdier version, such as the PMEG2010AET. Also notice that the R-PI's power supply also must be able to deliver the extra current.
+
The solution is to either only use externally powered converters, or to replace D1 with a sturdier version, such as the PMEG2010AET, and to replace the power input fuse F3 with a higher rated one, as the current one is only 700mA, and the adapter may use 400mA itself. Also notice that the R-PI's power supply also must be able to deliver the extra current.
  
 
Firstly, the following *might* work. Beagleboard people have reported various levels of success (mainly "issues"):
 
Firstly, the following *might* work. Beagleboard people have reported various levels of success (mainly "issues"):

Revision as of 12:26, 12 August 2012


Back to the Hub.


Hardware & Peripherals:

Hardware and Hardware History.

Low-level Peripherals and Expansion Boards.

Screens, Cases and Other Peripherals.


Supported Standards

The following display outputs are supported on the board:

  • Composite video (NTSC and PAL) via an RCA plug (the yellow socket on your TV) or SCART socket.
  • HDMI 1.3a standard output.
  • Display Serial Interface (DSI) - via unpopulated 15-way flat flex connector.

These interfaces allow the use of a broad range of displays, including:

  • Televisions (HDMI or composite).
  • Computer monitors (HDMI/DVI-D cable) (VGA monitors would require either a composite or HDMI to VGA or component scan converter box).
  • DLP/Laser Pico Projectors (HDMI/DVI-D cable).
  • RAW LCD panels (DSI + interfacing hardware)
  • Composite and HDMI outputs can not be used at the same time (one or the other.)


For more info about DVI, VGA, and SCART screens see The RPi Verified Peripherals Page

HDMI

Directly from the board.

DVI

With an inexpensive passive HDMI to DVI-D cable or converter.

Composite video

Composite video (NTSC and PAL) via an RCA plug, directly from the board.

RGB analog/VGA

The Broadcom BCM2835 only provides HDMI output and composite output. RGB and other signals needed by RGB, S-VIDEO or VGA connectors are however not provided, and the R-PI also isn't designed to power an unpowered converter box.

A couple of options for VGA or component RGB outputs, bridging from either HDMI or, (much less obvious) the MIPI DSI interface:

Note that any conversion hardware that converts HDMI/DVI-D signals to VGA (or DVI-A) signals may come with either an external PSU, or expects power can be drawn from the HDMI port. In the latter case the device may initially appear to work, but there will be a problem, as the HDMI specs only provide in a maximum of 50mA (@ 5 Volt) from the HDMI port, but all of these adapters try to draw much more, up-to 500mA, in case of the R-PI there is a limit of 200mA that can be drawn safely, as 200mA is the limit for the BAT54 diode (D1) on the board. Any HDMI to VGA adapter without external PSU might work for a time, but then burn out D1, therefore Do not use HDMI converters powered by the HDMI port! The solution is to either only use externally powered converters, or to replace D1 with a sturdier version, such as the PMEG2010AET, and to replace the power input fuse F3 with a higher rated one, as the current one is only 700mA, and the adapter may use 400mA itself. Also notice that the R-PI's power supply also must be able to deliver the extra current.

Firstly, the following *might* work. Beagleboard people have reported various levels of success (mainly "issues"):

http://www.hdfury.com/

Something similar:

http://www.fit-pc.com/web/fit-pc2/accessories/fit-vga/

...it may need to be modified as described here:

http://blog.galemin.com/2011/03/dvi-d-to-vga-converter-for-beagleboard-xm/

Alternatively, it may be possible to design an expansion board that plugs into the LCD headers on the R.Pi. Here is something similar for Beagleboard:

http://boardzoo.com/product_info12.php

Some more converters that should work:

More HDMI -> VGA converters are listed at the RasPi Verified Peripherals page, along with some caveats.

Potential interfacing chips:

The SOC (system on a chip) does not support any kind of analog component video, including VGA, since the SOC is designed for mobile phone use where this would not be a requirement. Additional components would be needed to generate RGB signals. Additional components would push the price beyond the $25 target and therefore won't happen.

RGB digital

A HDMI/DIV to parallel 3.3v interface PCB, also meant for the Beagleboard:

http://www.harbaum.org/till/dvi2par/index.shtml

Potential interfacing chips:

They emit Hsync, Vsync and RGB w/ about 8 bits each (sometimes, it's called "MIPI DPI")

Interfacing to non-monitor LCD panels

Embedded systems often have displays that aren't connected like televisions and computer monitors. RPI may be able to interface to some of these.

DSI port

DSI connector is on board on the RPI. Some graphical LCD/OLED displays might be attached to it.

An additional binary blob might be required for the DSI port to function correctly (or function at all). When or if such a blob will be made available is unknown.

Nokia N900 has 800x480 DCS LCD (afaik its like DSI, but has build in framebuffer). Replacement screen is about ~$40 (~$50 with 4pin resistive touchscreen).

Nokia N8 has AMOLED 360x640 pixels DSI LCD. Replacement screen is about ~$35, another ~$25 for Multitouch Synaptics T1021A touchscreen (I2C + interrupt IO, no docs/drivers).

The schematics for apples iPhone 3gs and 4g suggest they speak DSI, thus they can probably be connected directly. The older iPhones use a "Mobile Pixel Link" connection from National Semiconductor. The 3GS panel (480×320) goes as low as US $14.88, while the 4G one (960×640, possibly the LG LH350WS1-SD01, with specifications) can be had for US $17.99 or as low as US $14.28. The connectors used might be an issue, but this connector might fit. Additional circuitry might be necessary to provide the display with required 1.8V and 5.7V for operation, and an even higher voltage for the backlight.

Other panels with MIPI DSI: www.panelook.com

The Raspberry Pi provides one clock lane and two data lanes on the S2 connector, as can be read from the schematics. It is currently unknown whether this is enough to drive the iPhone 4G screen, as that screen seems be driven with three data lanes in its original application.

Potential LVDS interfacing chips:

TC358764/5 Display Bridge (MIPI® DSI to LVDS)

DVI receiver TFP401A, TFP403, or TFP501 + LVDS transmitter SN75LVDS83B or SN65LVDS93A (Mentioned earlier fit-VGA is build around TFP401A, probably many more "active" DVI2VGA cables are build the same way)

I2C/SPI ADC can be used to interface 4 pin resistive Touch Screens, For example STMPE812A. Texas Instruments has a solution for 4 or 8 wire touchscreens using their rather cheap MSP4309.

Character cell LCD modules

These have controllers and interfaces for feeding in text (and symbols). Common screen sizes include 16x2 to 40x4. Often seen in keypads, industrial machines, cash registers, laser printers etc.

The old-style 2-line, 16-character LCD displays can be commonly controlled over UART, thus providing a cheap way to display values for sensors etc.

References