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Gregory CLEMENT

I Embedded Linux engineer and trainer at Free Electrons since
2010

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributing to kernel support for the Armada 370, 375,
38x and Armada XP ARM SoCs from Marvell.

I Co-maintainer of mvebu sub-architecture (SoCs from Marvell
Engineering Business Unit)

I Living near Lyon, France
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Motivation and Overview

I Motivation
I All the new ARM CPUs are now SMP capable.
I Most of the new ARM SoCs actually uses multiple CPUs.
I Did SMP bring up for two kinds of ARM SoCs during past year.
I Documentation I would have like to find.

I Overview
I SMP operations and functions.
I Implementation of these functions.
I Issues encountered during SMP bring up.
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SMP on ARM SoC?

I A symmetric multiprocessor system (SMP) is a multiprocessor
system with centralized shared memory called main memory
(MM) operating under a single operating system with two or
more homogeneous processors. (Wikipedia)

I Most of the SMP code is not architecture dependent (in
kernel directory).

I Most of the hardware support is related to the ARM
specification.

I SoC level: all that is beyond the CPU, mainly initialization
and power down the CPUs.
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Assumptions

I SoC support is working on one CPU core.

I Support is following the last requirements
(see “Your new ARM SoC Linux support check-list” from Thomas Petazzoni:

http://free-electrons.com/pub/conferences/2013/elc/arm-soc-

checklist/)

I Datasheet is available.

I No hardware bug (or at least they are documented).
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SMP operations

I Few SMP functions related to the SoC:

struct smp_operations {

void (*smp_init_cpus)(void);

void (*smp_prepare_cpus)(unsigned int max_cpus);

void (*smp_secondary_init)(unsigned int cpu);

int (*smp_boot_secondary)(unsigned int cpu,

struct task_struct *idle);

[...]

};

I Only smp_boot_secondary() is mandatory, others are
optional and depend on the need of the SoCs.
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Role of each SMP operations 1/2

I smp_init_cpus():
I Setup the set of possible CPUs (via cpu_possible()).
I Can be removed if the CPU topology is up to date in the

device tree.
I Called very early during the boot process (from

setup_arch()).

I smp_prepare_cpus():
I Enables coherency.
I Initializes cpu_possible map.
I Prepares the resources (power, ram, clock...).
I Called early during the boot process (before the initcalls but

after setup_arch()).
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Role of each SMP operations 2/2

I smp_secondary_init():
I Supposed to “perform platform specific initialization of the

specified CPU”.
I Mostly dealing with pen release stuff which seems to be wrong.

Russell King: The pen_ release stuff is only there for
platforms where there’s no proper way of controlling the
secondary CPUs except by using a software method.

I Called from secondary_start_kernel() on the CPU which
has just been started.

I smp_boot_secondary():
I Actually boots a secondary CPU identified by the CPU number

given in parameter.
I Called from cpu_up() on the booting CPU.
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Booting sequence of the SMP operations
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Hotplug SMP operations

I When CONFIG_HOTPLUG_CPU is selected three more functions
are added to smp_operations:

struct smp_operations {

[...]

int (*cpu_kill)(unsigned int cpu);

void (*cpu_die)(unsigned int cpu);

int (*cpu_disable)(unsigned int cpu);

};

I To support the hotplug features cpu_kill() and cpu_die()

must be provided.
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Role of each SMP hotplug operations 1/2

I cpu_kill():
I Supposed to do the powering off and/or cutting off clocks to

the dying CPU.
I Need to be synchronized with cpu_die().
I Needed for kexec (only user of

platform_can_cpu_hotplug(), which checks the presence of
this function).

I Called on the thread which is asking for a CPU to be
shutdown.

I cpu_die():
I Supposed to ensure death of the CPU.
I Not supposed to return from this function, returns only if the

SoC can’t power down the CPU.
I Either power down the CPU or at least call cpu_do_idle().
I Called from the idle thread for the CPU which has been

shutdown.
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Role of each SMP hotplug operations 2/2

I cpu_disable():
I Common ARM code takes care of the shutdown of a CPU: no

more interrupts can be handled by the kernel after the routine
returns, including local timers which are shutdown.

I By default, the common code allows disabling all CPUs except
the first one (the boot CPU). This function can be used to
change this behavior.

I Runs on the CPU to be shutdown.
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SMP related features: nice to have

Not mandatory features, but they are usually added in the same
time that SMP support.

I IRQ affinity: allows to dedicate one or several CPUs to an
interrupt.

I Part of the IRQ chip driver.
I Implemented in the following handler:

int (*irq_set_affinity)(struct irq_data *data,

const struct cpumask *dest, bool force)

I Local timer: timer dedicated to a CPU, thanks to this, no
more need to broadcast a tick to all the CPUs.

I No more a specific API to register it since 3.12.
I Still needs to use the percpu API and the notifiers to

implement it.
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Use of the PSCI for SMP

PSCI stands for Power State Coordination Interface.

I Needed for virtualization.

I Used to coordinate OSes and hypervisors.

I Only solution to deal with secure mode.

I Provides functions used for SMP bring-up such as CPU_ON or
CPU_OFF.

I Function provided by the firmware, the SMP operations are no
more used.

I ID of these functions provided through the device tree.
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Implementing the SMP operations 1/2

I smp_init_cpus()
I Typically if an SCU unit is available the number of CPUs is

retrieved using scu_get_core_count().
I And then the CPU possible map is built

using set_cpu_possible().
I However as the cpu topology is supposed to be described in

the device tree, the whole map is already built in the function
arm_dt_init_cpu_maps.

I smp_prepare_cpus()
I If SCU is present then the coherency is enabled by using

scu_enable().
I Most of the time resources are allocated and the registers are

mapped using ioremap() and its friends.
I The way to enable (if needed) the power and the clocks is

highly platform specific and does not involve common code.
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Implementing the SMP operations 2/2

I smp_secondary_init()
I No common code used here but a lot of copy/paste of the

pen_release mechanism.

I smp_boot_secondary()
I Releases the CPU from reset by writing on a power

management register.
I Some time writes “magic” pattern read by the bootrom which

will release the CPU from reset.
I Uses the pen_release if the secondary CPU has already been

released from reset.
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Implementing the SMP hotplug operations 1/2

I cpu_kill()

I Most of the platforms check that the CPU is going to die, by
reading a register of the SoC wrote by the dying CPU.

I Some platforms really check that the dying CPU went in the
reset state.

I Then it actually powers down the CPU if the dying CPU has
not done it by itself.

I cpu_die()
I On most of the platforms, the dying CPU writes a register of

the SoC, usually by setting to 0 the jump address of the CPU.
I Some platforms switch in low power mode.
I The others just call cpu_do_idle().
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Implementing the SMP hotplug operations 2/2

I cpu_disable()
I Only implemented if the behavior of the platforms is different

of the default (ie all CPUs except the first one can be killed).
I Currently only used by shmobile where any CPU can be killed.
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Registering the SMP operations

I Used to be part of the machine description. The
smp_operations structure of the SoC was associated to the
.smp field using the smp_ops() helper.

I From 3.16, they should be directly registered using the
CPU_METHOD_OF_DECLARE() helper.

I Then the operation will be fetched from the device tree.
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Implementing a local timer

I Should be part of a clock source driver in
drivers/clocksource/.

I Each local timer will be called during the CPU bring up
(CPU_STARTING), so the setup of the timer must be
associated to a notifier using register_cpu_notifier().

I The timer must be stopped when the CPU is shutting down
(CPU_DYING), so this function will be also associated to the
notifier.

I The interrupt has to be registered with
request_percpu_irq().

I And the clock_event_device has to be allocated with
alloc_percpu().
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Implementing the IRQ affinity

I Should be part of an IRQ chip driver in drivers/irqchip/.

I The interrupts associated to (struct irq_data *data

received should be treated only by the CPU represented by
struct cpumask *dest.

I The cpumask can be manipulated using the helpers located in
include/linux/cpumask.h.

I It is valid, depending of the hardware capabilities, to set the
IRQ affinity of only of a subset of the group of the CPUs.
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SMP and device tree: CPU topology - ”cpus”

From Documentation/devicetree/bindings/arm/cpus.txt:
The device tree allows to describe the layout of CPUs in a system
through the ”cpus” node, which in turn contains a number of
subnodes (ie ”cpu) defining properties for every cpu.
The cpus nodes are composed of:

I #address-cells: 1 for 32-bit and 2 for 64-bit

I #size-cells: Always 0
I enable-method:

I Optional for ARM 32-bit, but highly recommended for new
implementations from 3.16.

I For ARM 32 bits, the string is the one used for registering the
SMP operations with CPU_METHOD_OF_DECLARE().

I Required for ARM v8 and must be "spin-table" or "psci"
I Possible to use "psci" for ARM 32-bit too.
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SMP and device tree: CPU bindings - ”cpu”

The cpu subnodes are composed of:

I device_type: Always "cpu".

I reg: Related to the MPIDR, more or less the ID of the CPU.

I compatible: The CPU type for example: "arm,cortex-a9"

or "marvell,pj4b".

I enable-method: Supposed to be defined at the CPU level
but can be inherit from the CPUs level.
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SMP and device tree: CPU bindings - Example

cpus {

#address-cells = <1>;

#size-cells = <0>;

enable-method = "marvell,armada-380-smp";

cpu@0 {

device_type = "cpu";

compatible = "arm,cortex-a9";

reg = <0>;

};

cpu@1 {

device_type = "cpu";

compatible = "arm,cortex-a9";

reg = <1>;

};

};
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SMP and device tree: PSCI

Fully defined in
Documentation/devicetree/bindings/arm/psci.txt.
It is more that just supporting SMP.

I compatible: Always "arm,psci"

I device_type: Always "cpu".

I method: "smc" or "hvc" depending on the method used to
call the PSCI firmware.

I cpu_off: Function ID for CPU_OFF operation.

I cpu_on: Function ID for CPU_ON operation.

I There are other functions defined but they are not used as
SMP operations.
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SMP and device tree: PSCI - Example

psci {

compatible = "arm,psci";

method = "smc";

cpu_suspend = <0x84000002>;

cpu_off = <0x84000004>;

cpu_on = <0x84000006>;

};

cpus {

#address-cells = <1>;

#size-cells = <0>;

cpu@0 {

compatible = "arm,cortex-a15";

device_type = "cpu";

reg = <0>;

};

[...]

cpu@3 {

compatible = "arm,cortex-a15";

device_type = "cpu";

reg = <3>;

};

};
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Issues encountered during SMP Bring-up: coherency

I Symptom: The kernel booted on the CPU 0 but the other
CPUs failed to boot.

I On the secondary CPUs the L1 cache were corrupted.
I The L1 cache needed to be invalidated before starting a

secondary CPU.
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Issues encountered during SMP Bring-up: coherency

I Symptom: The kernel crashed pretty early during the SMP
initialization.

I The registers controlling the coherency were not mapped yet.
I The initialization of the resources associated to the coherency

were done in an initcall, however the coherency for SMP is
called before the initcalls.

I The solution was to move this initialization in the .init_time

handler called directly from start_kernel.
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Issues encountered during SMP Bring-up: timers

I Symptom: The kernel booted but then nothing happened in
userspace

I No timer ticked at all so no schedule happened.
I Here the problem was that the field irq of the timer was not

filled.
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Issues encountered during SMP Bring-up: timers

I Symptom: Sometimes the kernel hanged, just after booting,
sometimes later when we have already switched to userspace.

I There was no local timer neither broadcast timer: no tick on
the secondary CPUs. As soon as the task ran on a secondary
CPU, then it hanged, as no schedule happened.

I The reason in our case was that CONFIG_HAVE_TWD was not
selected.
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Questions?

Gregory CLEMENT

gregory.clement@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elc/clement-smp-bring-

up-on-arm-soc
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