
Embedded Linux Conference 2014

SMP bring up on
ARM SoCs

Gregory CLEMENT
Free Electrons
gregory.clement@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/31



Gregory CLEMENT

I Embedded Linux engineer and trainer at Free Electrons since
2010

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributing to kernel support for the Armada 370, 375,
38x and Armada XP ARM SoCs from Marvell.

I Co-maintainer of mvebu sub-architecture (SoCs from Marvell
Engineering Business Unit)

I Living near Lyon, France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/31

http://free-electrons.com


Motivation and Overview

I Motivation
I All the new ARM CPUs are now SMP capable.
I Most of the new ARM SoCs actually uses multiple CPUs.
I Did SMP bring up for two kinds of ARM SoCs during past year.
I Documentation I would have like to find.

I Overview
I SMP operations and functions.
I Implementation of these functions.
I Issues encountered during SMP bring up.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/31



SMP on ARM SoC?

I A symmetric multiprocessor system (SMP) is a multiprocessor
system with centralized shared memory called main memory
(MM) operating under a single operating system with two or
more homogeneous processors. (Wikipedia)

I Most of the SMP code is not architecture dependent (in
kernel directory).

I Most of the hardware support is related to the ARM
specification.

I SoC level: all that is beyond the CPU, mainly initialization
and power down the CPUs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/31



Assumptions

I SoC support is working on one CPU core.

I Support is following the last requirements
(see “Your new ARM SoC Linux support check-list” from Thomas Petazzoni:

http://free-electrons.com/pub/conferences/2013/elc/arm-soc-

checklist/)

I Datasheet is available.

I No hardware bug (or at least they are documented).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/31

http://free-electrons.com/pub/conferences/2013/elc/arm-soc-checklist/
http://free-electrons.com/pub/conferences/2013/elc/arm-soc-checklist/


SMP operations

I Few SMP functions related to the SoC:

struct smp_operations {

void (*smp_init_cpus)(void);

void (*smp_prepare_cpus)(unsigned int max_cpus);

void (*smp_secondary_init)(unsigned int cpu);

int (*smp_boot_secondary)(unsigned int cpu,

struct task_struct *idle);

[...]

};

I Only smp_boot_secondary() is mandatory, others are
optional and depend on the need of the SoCs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/31



Role of each SMP operations 1/2

I smp_init_cpus():
I Setup the set of possible CPUs (via cpu_possible()).
I Can be removed if the CPU topology is up to date in the

device tree.
I Called very early during the boot process (from

setup_arch()).

I smp_prepare_cpus():
I Enables coherency.
I Initializes cpu_possible map.
I Prepares the resources (power, ram, clock...).
I Called early during the boot process (before the initcalls but

after setup_arch()).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/31



Role of each SMP operations 2/2

I smp_secondary_init():
I Supposed to “perform platform specific initialization of the

specified CPU”.
I Mostly dealing with pen release stuff which seems to be wrong.

Russell King: The pen_ release stuff is only there for
platforms where there’s no proper way of controlling the
secondary CPUs except by using a software method.

I Called from secondary_start_kernel() on the CPU which
has just been started.

I smp_boot_secondary():
I Actually boots a secondary CPU identified by the CPU number

given in parameter.
I Called from cpu_up() on the booting CPU.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/31



Booting sequence of the SMP operations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/31



Hotplug SMP operations

I When CONFIG_HOTPLUG_CPU is selected three more functions
are added to smp_operations:

struct smp_operations {

[...]

int (*cpu_kill)(unsigned int cpu);

void (*cpu_die)(unsigned int cpu);

int (*cpu_disable)(unsigned int cpu);

};

I To support the hotplug features cpu_kill() and cpu_die()

must be provided.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/31



Role of each SMP hotplug operations 1/2

I cpu_kill():
I Supposed to do the powering off and/or cutting off clocks to

the dying CPU.
I Need to be synchronized with cpu_die().
I Needed for kexec (only user of

platform_can_cpu_hotplug(), which checks the presence of
this function).

I Called on the thread which is asking for a CPU to be
shutdown.

I cpu_die():
I Supposed to ensure death of the CPU.
I Not supposed to return from this function, returns only if the

SoC can’t power down the CPU.
I Either power down the CPU or at least call cpu_do_idle().
I Called from the idle thread for the CPU which has been

shutdown.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/31



Role of each SMP hotplug operations 2/2

I cpu_disable():
I Common ARM code takes care of the shutdown of a CPU: no

more interrupts can be handled by the kernel after the routine
returns, including local timers which are shutdown.

I By default, the common code allows disabling all CPUs except
the first one (the boot CPU). This function can be used to
change this behavior.

I Runs on the CPU to be shutdown.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/31



SMP related features: nice to have

Not mandatory features, but they are usually added in the same
time that SMP support.

I IRQ affinity: allows to dedicate one or several CPUs to an
interrupt.

I Part of the IRQ chip driver.
I Implemented in the following handler:

int (*irq_set_affinity)(struct irq_data *data,

const struct cpumask *dest, bool force)

I Local timer: timer dedicated to a CPU, thanks to this, no
more need to broadcast a tick to all the CPUs.

I No more a specific API to register it since 3.12.
I Still needs to use the percpu API and the notifiers to

implement it.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/31



Use of the PSCI for SMP

PSCI stands for Power State Coordination Interface.

I Needed for virtualization.

I Used to coordinate OSes and hypervisors.

I Only solution to deal with secure mode.

I Provides functions used for SMP bring-up such as CPU_ON or
CPU_OFF.

I Function provided by the firmware, the SMP operations are no
more used.

I ID of these functions provided through the device tree.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/31



Implementing the SMP operations 1/2

I smp_init_cpus()
I Typically if an SCU unit is available the number of CPUs is

retrieved using scu_get_core_count().
I And then the CPU possible map is built

using set_cpu_possible().
I However as the cpu topology is supposed to be described in

the device tree, the whole map is already built in the function
arm_dt_init_cpu_maps.

I smp_prepare_cpus()
I If SCU is present then the coherency is enabled by using

scu_enable().
I Most of the time resources are allocated and the registers are

mapped using ioremap() and its friends.
I The way to enable (if needed) the power and the clocks is

highly platform specific and does not involve common code.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/31



Implementing the SMP operations 2/2

I smp_secondary_init()
I No common code used here but a lot of copy/paste of the

pen_release mechanism.

I smp_boot_secondary()
I Releases the CPU from reset by writing on a power

management register.
I Some time writes “magic” pattern read by the bootrom which

will release the CPU from reset.
I Uses the pen_release if the secondary CPU has already been

released from reset.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/31



Implementing the SMP hotplug operations 1/2

I cpu_kill()

I Most of the platforms check that the CPU is going to die, by
reading a register of the SoC wrote by the dying CPU.

I Some platforms really check that the dying CPU went in the
reset state.

I Then it actually powers down the CPU if the dying CPU has
not done it by itself.

I cpu_die()
I On most of the platforms, the dying CPU writes a register of

the SoC, usually by setting to 0 the jump address of the CPU.
I Some platforms switch in low power mode.
I The others just call cpu_do_idle().

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/31



Implementing the SMP hotplug operations 2/2

I cpu_disable()
I Only implemented if the behavior of the platforms is different

of the default (ie all CPUs except the first one can be killed).
I Currently only used by shmobile where any CPU can be killed.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/31



Registering the SMP operations

I Used to be part of the machine description. The
smp_operations structure of the SoC was associated to the
.smp field using the smp_ops() helper.

I From 3.16, they should be directly registered using the
CPU_METHOD_OF_DECLARE() helper.

I Then the operation will be fetched from the device tree.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/31



Implementing a local timer

I Should be part of a clock source driver in
drivers/clocksource/.

I Each local timer will be called during the CPU bring up
(CPU_STARTING), so the setup of the timer must be
associated to a notifier using register_cpu_notifier().

I The timer must be stopped when the CPU is shutting down
(CPU_DYING), so this function will be also associated to the
notifier.

I The interrupt has to be registered with
request_percpu_irq().

I And the clock_event_device has to be allocated with
alloc_percpu().

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/31



Implementing the IRQ affinity

I Should be part of an IRQ chip driver in drivers/irqchip/.

I The interrupts associated to (struct irq_data *data

received should be treated only by the CPU represented by
struct cpumask *dest.

I The cpumask can be manipulated using the helpers located in
include/linux/cpumask.h.

I It is valid, depending of the hardware capabilities, to set the
IRQ affinity of only of a subset of the group of the CPUs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/31



SMP and device tree: CPU topology - ”cpus”

From Documentation/devicetree/bindings/arm/cpus.txt:
The device tree allows to describe the layout of CPUs in a system
through the ”cpus” node, which in turn contains a number of
subnodes (ie ”cpu) defining properties for every cpu.
The cpus nodes are composed of:

I #address-cells: 1 for 32-bit and 2 for 64-bit

I #size-cells: Always 0
I enable-method:

I Optional for ARM 32-bit, but highly recommended for new
implementations from 3.16.

I For ARM 32 bits, the string is the one used for registering the
SMP operations with CPU_METHOD_OF_DECLARE().

I Required for ARM v8 and must be "spin-table" or "psci"
I Possible to use "psci" for ARM 32-bit too.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/31



SMP and device tree: CPU bindings - ”cpu”

The cpu subnodes are composed of:

I device_type: Always "cpu".

I reg: Related to the MPIDR, more or less the ID of the CPU.

I compatible: The CPU type for example: "arm,cortex-a9"

or "marvell,pj4b".

I enable-method: Supposed to be defined at the CPU level
but can be inherit from the CPUs level.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/31



SMP and device tree: CPU bindings - Example

cpus {

#address-cells = <1>;

#size-cells = <0>;

enable-method = "marvell,armada-380-smp";

cpu@0 {

device_type = "cpu";

compatible = "arm,cortex-a9";

reg = <0>;

};

cpu@1 {

device_type = "cpu";

compatible = "arm,cortex-a9";

reg = <1>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/31



SMP and device tree: PSCI

Fully defined in
Documentation/devicetree/bindings/arm/psci.txt.
It is more that just supporting SMP.

I compatible: Always "arm,psci"

I device_type: Always "cpu".

I method: "smc" or "hvc" depending on the method used to
call the PSCI firmware.

I cpu_off: Function ID for CPU_OFF operation.

I cpu_on: Function ID for CPU_ON operation.

I There are other functions defined but they are not used as
SMP operations.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/31



SMP and device tree: PSCI - Example

psci {

compatible = "arm,psci";

method = "smc";

cpu_suspend = <0x84000002>;

cpu_off = <0x84000004>;

cpu_on = <0x84000006>;

};

cpus {

#address-cells = <1>;

#size-cells = <0>;

cpu@0 {

compatible = "arm,cortex-a15";

device_type = "cpu";

reg = <0>;

};

[...]

cpu@3 {

compatible = "arm,cortex-a15";

device_type = "cpu";

reg = <3>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/31



Issues encountered during SMP Bring-up: coherency

I Symptom: The kernel booted on the CPU 0 but the other
CPUs failed to boot.

I On the secondary CPUs the L1 cache were corrupted.
I The L1 cache needed to be invalidated before starting a

secondary CPU.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/31



Issues encountered during SMP Bring-up: coherency

I Symptom: The kernel crashed pretty early during the SMP
initialization.

I The registers controlling the coherency were not mapped yet.
I The initialization of the resources associated to the coherency

were done in an initcall, however the coherency for SMP is
called before the initcalls.

I The solution was to move this initialization in the .init_time

handler called directly from start_kernel.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/31



Issues encountered during SMP Bring-up: timers

I Symptom: The kernel booted but then nothing happened in
userspace

I No timer ticked at all so no schedule happened.
I Here the problem was that the field irq of the timer was not

filled.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/31



Issues encountered during SMP Bring-up: timers

I Symptom: Sometimes the kernel hanged, just after booting,
sometimes later when we have already switched to userspace.

I There was no local timer neither broadcast timer: no tick on
the secondary CPUs. As soon as the task ran on a secondary
CPU, then it hanged, as no schedule happened.

I The reason in our case was that CONFIG_HAVE_TWD was not
selected.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/31



Questions?

Gregory CLEMENT

gregory.clement@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elc/clement-smp-bring-

up-on-arm-soc

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/31

http://free-electrons.com/pub/conferences/2014/elc/clement-smp-bring-up-on-arm-soc
http://free-electrons.com/pub/conferences/2014/elc/clement-smp-bring-up-on-arm-soc

