
1 of 21Hard Time Linux

Hard TimeMaking Linux do
 Hard (Real-)Time

2 of 21Hard Time Linux

MBARI
The Monterey Bay Aquarium Research Institute is a
Non-Profit Research Center Founded in 1987 by Packard Foundation
Furthering marine research through the peer efforts of scientists and engineers
220 Employees (1/3 Science, 1/3 Engineering, 1/3 Administration)
 approx. $40 M/yr annual operating budget
Located in Moss Landing, California
Operates 2 full-time research ships plus numerous ROVs and AUVs
Including the swath vessel “Western Flyer” for longer missions further afield

3 of 21Hard Time Linux

Monterey Bay Submarine Canyon
Extends 95 miles from Moss Landing, California
Maximum Depth is 3600 meters, reachable by day boats.
Canyon Sides are > 1600 meters -- deeper than the Grand Canyon
Much is classified as a National Marine Sanctuary
New species are discovered on a regular basis

Vampyroteuthis infernalis

4 of 21Hard Time Linux

Simulated Time

Deus ex Machina

Simulated Time systems calculate time like any other quantity.

They incorporate model virtual worlds.

Program Logic
Virtual World

Useful for predicting the future or explaining the past...
 but not much use for influencing the present!

5 of 21Hard Time Linux

Real-Time
Any system that interacts with the real, physical world

Systems that interact with the real world must synchronize with it.

Time is an external input

Program Logic

6 of 21Hard Time Linux

Deadlines

Real-Time deadlines can be
 hard: where missed deadline means system failure
 characteristic of interactions with physical world
 firm: occasional missed deadlines are tolerable
 characteristic of interactions with other computers
 soft: preceived "quality" of system degrades as deadlines are missed
 characteristic of interactions with humans

Hard, firm and soft are subjective generalizations
Most systems have multiple deadline types, each with unique qualities.

A system is denoted as hard, firm or soft Real-Time depending on its
most challenging deadlines.

"Hard-realtime" systems may have firm and/or soft deadlines as well

7 of 21Hard Time Linux

Epiphany

Computers are fast relative to most real-time constraints
Embeddeded Linux is everywhere!
 It is inexpensive, robust, easy to program,
 hosting a huge number of languages and libraries

Use Linux and dedicate sufficient computing resources to ensure
hard real-time deadlines are always met.

8 of 21Hard Time Linux

Throughput vs. Determinism

Linux CPUs typically utilize large, multi-layer memory caches
Optimized for throughput rather than determinism
Caches make CPUs run like a hare
 but, in real-time systems, the tortoise wins!

CPU memory caching prevents Hard Real-Time processes from
safely utilizing more than a small fraction of the available time.

t0 t1 t2 t3

Real-Time Process
in fast CPU cache

Real-Time Process
in fast CPU cache

non
R/T
task

Real-Time Process
bumped from CPU cache...

Missed Deadline

One generally cannot lock real-time processes into CPU caches
Sometimes, one can reserve a core exclusively for R/T processes

Non-Real Time
"Distraction"

9 of 21Hard Time Linux

Trouble in Kernel Space

Linux was designed to be open, flexible, fair, and fast.
 It was never intended to meet hard timing deadlines.

Long running Linux kernel operations could not be interrupted.
Device Drivers would occasionally disable interrupts for many milliseconds.

These issues were scattered throughout the kernel sources!

Until recently...

10 of 21Hard Time Linux

Does PREEMPT_RT Spell Redeemtion?

The PREEMPT_RT patch dramatically reduces the kernel's max. latency
 --> a truely amazing feat of software engineering!!

But, the RT patch is still not in the kernel mainline, because:
 It lowers aggregate throughput

Some low-end platforms lack the hardware support to implement RT well.

Device drivers have been steadily improved

Linux OS &
Laundry Soap

Reformulated

with

PREEMPT_RT

for Real-Time

11 of 21Hard Time Linux

Trouble in User Space

Modern, popular programming environments and languages
 Often sacrifice determinism for ease of use
 May "automagically" invoke time-consuming algorithms.

Software Libraries are black boxes by design
 APIs specify inputs and outputs, but rarely compute time.

Applications with challenging hard timing deadlines are often forced to
utilize low-level programming and to reimplement existing libraries.

PREEMPT_RT does not address User Space latency.

Even carefully written User Space code, running at "Real-Time" priority,
my find itself contending with other user space processes for
commonly accessed resources.

12 of 21Hard Time Linux

Biological Inspiration

Our cerebral cortex shares many qualities of a typical Linux computer
 It is very complex, flexible, and, sometimes, even fair.
Humans are blissfully unaware of firing of individual muscles for
 walking, talking, eating, digestion, etc.
Routine activities are controlled by our peripheral nervous system.
Our cerebrum focuses on analyzing and responding to unusual stimuli
 at a high level.
Our cerebellum, or "little brain", coordinates stimulation with motion
 It is our center for real-time control and perception

Interestingly, humans can function without their cerebellum, but:

the resulting quality of life is significantly compromised
with clumsiness, ...,
slowing of various cognitive perceptual processes, and
impaired fine motor and ocular-motor coordination.

http://jcn.sagepub.com/content/17/1/1.abstract

13 of 21Hard Time Linux

Partition the Problem

Identify what event-response loops have the most demanding deadlines

Factor only these critical loops into a separate, streamlined executable(s)

This is your real-time application's "Cerebellum"
 Insulate your main application logic from timing constraints!
 Implement it in a system programming language (like 'C' or C++)
 Minimize use of 3rd-party libraries

Connect to the non-time critical parts application parts via queues,
 Real-time parts must block, waiting to communicate results

Now you are are ready to...

14 of 21Hard Time Linux

Distribute Control (Virtually)

Run your real-time event response loops on reserved computing resources
 Initally, try using virtual computing resources

 Linux processes with Real-Time priority
 Most convenient option
 But it is not very effective without an RT-patched kernel
 If you can, dedicate a core to RT processes!
 Use shared memory to communicate with main app
 Complete access to Linux kernel and user space
 But you risk priority inversion

 Real-time tasks running with Linux in a hypervisor environment
 Less convenient
 Works quite well even without an RT-patched kernel
 Hypervisor specific IPC mechanisms for comms with main app
 No easy access to Linux kernel and user space
 No danger of priority inversion
 Still vulnerable to trashing CPU caches

http://wiki.ok-labs.com/

15 of 21Hard Time Linux

Distribute Control (Physically)
Dedicate microcontrollers to your critical event-response loops

The least "convenient" option, but offering:
 No need for a RT-patched Linux kernel
 Much more deterministic response times
 No possibility of thrashing CPU caches
 Fewer resource contention issues
 Much lower power consumption
 Ability to safely limp or shutdown if host computer crashes
But, you must program on "the bare metal" or small Real-Time OS

Spindle Head

Actuator Arm

Actuator Axis

Actuator

IDE Connector

Jumper Block

Power Connector

Platter

Linux Inside!I don't think so

Dedicated DSP(s)

16 of 21Hard Time Linux

Microcontrollers Close the Loop
Microcontrollers are cheap and many use the GNU Compiler Collection
 Support for remote target debugging

Disadvantages:
 Custom hardware design
 Generally, a lot slower than most x86 systems
 No shared memory with Linux host possible
 Must use some form of physical networking

http://hackaday.com/2012/11/15/in-depth-comparison-at-stm32-f3-and-f4-discovery-boards/

$15 USD/each

Caches

256kB Flash
48kB Fast Static RAM
72 MIPS
Analog I/O
High Resolution Timers
Eclipse Based IDE

For Example:

17 of 21Hard Time Linux

Smart I/O

If you need specialized I/O...
 You can likely find a microcontroller that already incorporates it.
 Many USB I/O extenders are just such microcontrollers
 Programmed to provide bit-level access to their built-in peripherals
 But, with custom programming, they can do much more!

18 of 21Hard Time Linux

Environmental Sample Processor
A (very complicated) Water Sampler

Filters 1 to 4 liters of water
Ruptures cells it collects
Extracts DNA and RNA
Identifies Species
Detects Algal Toxins
Radios results in hours

A robotic,
molecular biology
 "Lab in a Can"

19 of 21Hard Time Linux

Distributed Control Case Study
Ten year old hardware design, ARM9 @200Mhz, ~90 Bogomips
Linux 2.4 kernel (no RT patch, Big Kernel Lock, IDE disables interrupts)
Host application written almost entirely Ruby 1.8 scripting language!!

TI MSP430 microcontrollers networked to the Linux host via I2C
control heaters and a dozen or so servo motors updated at 64hz.

20 of 21Hard Time Linux

Control System Electronics

Electromechanical
Control Loops

Logic & Comms

Linux

21 of 21Hard Time Linux

Real-Time Rx

Partition your problem into Real-Time and non Real-Time tasks

Decouple different time domains (with queues)

Dedicate computing resources to Real-Time tasks

Consider dedicated CPUs optimized for deterministic response

Linux will sometimes be only part of the solution

