
Debugging Embedded Devices using GDB

Chris Simmonds

Embedded Linux Conference Europe 2020

Debugging Embedded Devices using GDB 1 Copyright © 2011-2020, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Debugging Embedded Devices using GDB 2 Copyright © 2011-2020, 2net Ltd

http://creativecommons.org/licenses/by-sa/4.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at https://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Debugging Embedded Devices using GDB 3 Copyright © 2011-2020, 2net Ltd

https://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

Objectives

• Show how to use GDB to debug devices running embedded Linux

• How to attach to a running process

• How to look at core dumps

• Plus, we will look at graphical interfaces for GDB

• Reference: Mastering Embedded Linux programming, Chapter 14

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it"
- Brian W. Kernighan

Debugging Embedded Devices using GDB 4 Copyright © 2011-2020, 2net Ltd

Resources
• As part of this tutorial I will be running several live demos of the

various techniques

• For the development machine I will be using a Linux laptop running
Ubuntu 18.04

• And I will be using a Raspberry Pi 3B as the target, running a Yocto
Project Linux build

• You can download a workbook containing full instructions for setting up
and running the demos from
https:/2net.co.uk/downloads/

debugging-with-gdb-csimmonds-elce-2020-workbook.pdf

• I encourage you to follow along with the video :-)

Debugging Embedded Devices using GDB 5 Copyright © 2011-2020, 2net Ltd

https:/2net.co.uk/downloads/debugging-with-gdb-csimmonds-elce-2020-workbook.pdf
https:/2net.co.uk/downloads/debugging-with-gdb-csimmonds-elce-2020-workbook.pdf

The Raspberry Pi 3B

• Popular dev board
https://www.raspberrypi.org

• Low cost ($35)
• BCM2837 Soc: 4 x Cortex-A53 ARMv8

64-bit @ 1.2GHz
• 1 GiB SDRAM
• Micro SD card slot
• 4 x full size USB 2.0 A host
• 100 Mbit Ethernet
• HDMI video output

Debugging Embedded Devices using GDB 6 Copyright © 2011-2020, 2net Ltd

https://www.raspberrypi.org

Yocto Project

https://www.yoctoproject.org

• Yocto Project is a build system that creates packages from source
code

• It is based on the Bitbake job scheduler and OpenEmbedded meta
data

• They allow you to create your own tailor-made Linux distro

• Yocto Project and OpenEmbedded have been used to create the
software running on many millions of devices

• Instructions for setting up Yocto Project are in the workbook

Debugging Embedded Devices using GDB 7 Copyright © 2011-2020, 2net Ltd

https://www.yoctoproject.org

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 8 Copyright © 2011-2020, 2net Ltd

Toolchains

GNU toolchain = GCC + binutils + C library + GDB

GCC GNU Compiler Collection - C, C++, Objective-C, Go and other
languages

binutils assembler, linker and utilities to manipulate object code

C library the POSIX API and interface to the Linux kernel

GDB the GNU debugger

Debugging Embedded Devices using GDB 9 Copyright © 2011-2020, 2net Ltd

Native vs cross compiling

Native (develop on target; run on target), e.g.

• PC

• Raspberry Pi running Raspbian

Cross (develop on host; run on target), e.g.

• Yocto Project/OpenEmbedded

• Buildroot

This tutorial uses cross compilation

Debugging Embedded Devices using GDB 10 Copyright © 2011-2020, 2net Ltd

Getting a toolchain

Your options are:

• Build from upstream source, e.g. using CrosstoolNG:
http://crosstool-ng.github.io

• Download from a trusted third party, e.g. Linaro or Bootlin

• Use the one provided by your SoC/board vendor (check quality first)

• Use an embedded build system (Yocto Project, OpenEmbedded,
Buildroot) to generate one

Debugging Embedded Devices using GDB 11 Copyright © 2011-2020, 2net Ltd

http://crosstool-ng.github.io

Toolchain prefix

• GNU toolchains are usually identified by a prefix of the form
arch-vendor-kernel-operating system

• Example: mipsel-unknown-linux-gnu-

• arch: mipsel (MIPS little endian)

• vendor: unknown

• kernel: linux

• operating system: gnu

• So, the C compiler would be
mipsel-unknown-linux-gnu-gcc

Debugging Embedded Devices using GDB 12 Copyright © 2011-2020, 2net Ltd

Toolchain prefix for 32-bit ARM toolchains

• 32-bit ARM has several incompatible ABIs (Application Binary
Interface - the rules for function calls, parameter passing, etc.)

• Reflected in the Operating system part of the prefix

• Examples:

• arm-unknown-linux-gnu-: Old ABI (obsolete)

• arm-unknown-linux-gnueabi-: Extended ABI with soft floating point(*)

• arm-unknown-linux-gnueabihf-: Extended ABI with hard floating point(*)

(*) Indicates how floating point arguments are passed: either in integer registers or
hardware floating point registers

Debugging Embedded Devices using GDB 13 Copyright © 2011-2020, 2net Ltd

Toolchain sysroot
• The sysroot of the toolchain is the directory containing the supporting

files

• Header files; shared and static libraries, etc.

• Native toolchain: sysroot = ’/’

• Cross toolchain: sysroot is usually inside the toolchain directory

• Find it using -print-sysroot

• Example:
$ aarch64-buildroot-linux-gnu-gcc -print-sysroot

/home/training/aarch64--glibc--stable/bin/../

aarch64-buildroot-linux-gnu/sysroot

You need to know the sysroot when cross-compiling and debugging

Debugging Embedded Devices using GDB 14 Copyright © 2011-2020, 2net Ltd

sysroot

[sysroot]
├── lib
├── lib64 -> lib
└── usr
 ├── include
 ├── lib
 │ ├── audit
 │ └── gconv
 ├── lib64 -> lib
 ├── libexec
 │ └── getconf
 └── share
 ├── aclocal
 ├── buildroot
 ├── i18n
 └── locale

sysroot = aarch64-buildroot-linux-gnu/sysroot

Debugging Embedded Devices using GDB 15 Copyright © 2011-2020, 2net Ltd

Getting to know your toolchain

Find out about GCC with these options

• -print-sysroot: print sysroot

• --version: version

• -v: configuration, look out for

• --enable-languages= (example c,c++)

• --with-cpu= (the default CPU)

• --enable-threads (has POSIX threads library)

Debugging Embedded Devices using GDB 16 Copyright © 2011-2020, 2net Ltd

The Yocto Project SDK

• If using Yocto Project/OpenEmbedded, you can create an SDK that
includes a toolchain with

$ bitbake -c populate_sdk <image name>

• Generates self-installing shell script with a name like
poky-glibc-x86_64-core-image-base-cortexa7t2hf-neon-vfpv4-raspberrypi3-

toolchain-3.1.3.sh

• Default install path for this SDK is /opt/poky/3.1.3

• To use the SDK, you must first source a script, e.g.
$ source /opt/poky/3.1.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Debugging Embedded Devices using GDB 17 Copyright © 2011-2020, 2net Ltd

Finding the sysroot of a Yocto Project toolchain
• The sysroot is reported as /not/exist

$ arm-poky-linux-gnueabi-gcc -print-sysroot

/not/exist

• Instead, the sysroot is set by shell variables CC, CXX and LD

• For example, CC contains
$ echo $CC

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7

-fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=

format-security --sysroot=/opt/poky/3.1.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

• So, compile code using:
$ $CC helloworld.c -o helloworld

Debugging Embedded Devices using GDB 18 Copyright © 2011-2020, 2net Ltd

The tools
addr2line Converts program addresses into file and line no.
ar archive utility is used to create static libraries
as GNU assembler
cpp C preprocessor, expands #define, #include etc
g++ C++ front end, (assumes source is C++ code)
gcc C front end, (assumes source is C code)
gcov code coverage tool
gdb GNU debugger
gprof program profiling tool
ld GNU linker
nm lists symbols from object files
objcopy copy and translate object files
objdump display information from object files
readelf displays information about files in ELF object format
size lists section sizes and the total size
strings displays strings of printable characters in files
strip strip object file of debug symbol tables

Debugging Embedded Devices using GDB 19 Copyright © 2011-2020, 2net Ltd

Demo time (1)

Boot the Raspberry Pi

Log on

Cross compile helloworld and run on the Raspberry Pi

Debugging Embedded Devices using GDB 20 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 21 Copyright © 2011-2020, 2net Ltd

Preparing to debug 1/2

Compile with the right level of debug information
gcc -gN myprog.c -o myprog

where N is from 0 to 3:
Level Description
0 no debug information (equivalent to omitting -g)
1 minimal information, just enough to generate a backtrace
2 (default) source-level debugging and single-stepping
3 information about macros

You can replace -gN with -ggdbN to generate GDB specific debug info
instead of generic DWARF format

Debugging Embedded Devices using GDB 22 Copyright © 2011-2020, 2net Ltd

Preparing to debug 2/2

• Code optimization can be a problem

• especially if you plan to do a lot of single-stepping

• Consider turning off optimization with compiler flag -O0

• Or enable just GDB compatible optimizations with compiler flag -Og

Debugging Embedded Devices using GDB 23 Copyright © 2011-2020, 2net Ltd

Remote debugging

Program
symbols

gdb from
toolchain

Program
without symbols

gdbserver

Host Target

Network
or

serial

Debugging Embedded Devices using GDB 24 Copyright © 2011-2020, 2net Ltd

Debug info

• Need debug info on the host for the applications and libraries you
want to debug

• It’s OK for the files on the target to be stripped: gdbserver does not use
debug info

• Debug info may be included in the binary (the Buildroot way)

• Or placed in a sub-directory named .debug/ (the Yocto
Project/OpenEmbedded way)

Debugging Embedded Devices using GDB 25 Copyright © 2011-2020, 2net Ltd

Setting sysroot

• sysroot tells GDB where to find library debug info

• For Buildroot
set sysroot <toolchain sysroot>

• Using a Yocto Project SDK:
set sysroot /opt/poky/<version>/sysroots/<architecture>

Debugging Embedded Devices using GDB 26 Copyright © 2011-2020, 2net Ltd

Command-line debugging
Development host Embedded target

gdbserver :2001 helloworld

$ arm-poky-linux-gnueabi-gdb helloworld
(gdb) set sysroot /opt/poky/3.1.3/...
(gdb) target remote 192.168.42.2:2001

“Remote debugging from host 192.168.42.1”

{program runs to main()}

(gdb) break main
(gdb) continue

Debugging Embedded Devices using GDB 27 Copyright © 2011-2020, 2net Ltd

Notes

• GDB command target remote links gdb to gdbserver

• Usually a TCP connection, but can be UDP or serial

• gbdserver loads the program into memory and halts at the first
instruction

• You can’t use commands such as step or next until after the start of C
code at main()

• break main followed by continue stops at main(), from which point you
can single step

Debugging Embedded Devices using GDB 28 Copyright © 2011-2020, 2net Ltd

Breakpoints
Add a breakpoint

break [line|function], example

(gdb) break main

Breakpoint 1 at 0x400535: file helloworld.c, line 7.

List breakpoints
info break:

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00400535 in main at helloworld.c:7

Delete a breakpoint
delete break:

(gdb) delete break 1

Debugging Embedded Devices using GDB 29 Copyright © 2011-2020, 2net Ltd

Controlling execution

Continue executing the program from a breakpoint
continue

Step one line of code, stepping into functions
step

Step one line of code, stepping over functions
next

Run to the end of the current function
finish

Run the program from the start (does not work with remote debugging)
run

Debugging Embedded Devices using GDB 30 Copyright © 2011-2020, 2net Ltd

Displaying and changing variables

Display a variable
print some_var

(gdb) print i

$1 = 1

Change a variable
set some_var=new_value

(gdb) set var i=99

Debugging Embedded Devices using GDB 31 Copyright © 2011-2020, 2net Ltd

Demo time

Debug helloworld

Debugging Embedded Devices using GDB 32 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 33 Copyright © 2011-2020, 2net Ltd

GDB command files

• At start-up GDB reads commands from

• $HOME/.gdbinit

• .gdbinit in current directory

• Files named by gdb command line option -x [file name]

• Note: auto-load safe-path

• Recent versions of GDB ignore .gdbinit unless you enable it in
$HOME/.gdbinit

add-auto-load-safe-path /home/myname/myproject/.gdbinit

Debugging Embedded Devices using GDB 34 Copyright © 2011-2020, 2net Ltd

Defining a new command
• You can define a new command like this:

define bmain

break main

info break

end

• Then run it just like any other gdb command:
(gdb) bmain

Breakpoint 1 at 0x400516: file helloworld.c, line 7.

Num Type Disp Enb Address What

1 breakpoint keep y 0x00400516 in main at helloworld.c:7

• Useful for sequences that you use many times

• You can put the code into a command file

Debugging Embedded Devices using GDB 35 Copyright © 2011-2020, 2net Ltd

Demo time

Create a command file to speed things up

Debugging Embedded Devices using GDB 36 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 37 Copyright © 2011-2020, 2net Ltd

TUI

The Terminal User Interface, TUI, is an optional component of GDB

Just add -tui to the gdb command (assuming tui is enabled), for
example

arm-poky-linux-gnueabi-gdb -tui helloworld

Or toggle on and off with Ctrl-x a

Debugging Embedded Devices using GDB 38 Copyright © 2011-2020, 2net Ltd

TUI

Debugging Embedded Devices using GDB 39 Copyright © 2011-2020, 2net Ltd

cgdb
https://cgdb.github.io/

Similar to TUI, but better

Not usually installable as a package, but you can instead can get it and
install like this:
$ wget https://cgdb.me/files/cgdb-0.7.1.tar.gz

$ tar xz cgdb-0.7.1.tar.gz

$ cd cgdb-0.7.1

$./configure --prefix=/usr/local

$ make

$ sudo make install

Then, launch it like this:

cgdb -d arm-poky-linux-gnueabi-gdb helloworld

Debugging Embedded Devices using GDB 40 Copyright © 2011-2020, 2net Ltd

https://cgdb.github.io/

cgdb

Debugging Embedded Devices using GDB 41 Copyright © 2011-2020, 2net Ltd

DDD: Data Display Debugger

A graphical front-end to GDB

Launch like this:

ddd --debugger arm-poky-linux-gnueabi-gdb helloworld

Debugging Embedded Devices using GDB 42 Copyright © 2011-2020, 2net Ltd

DDD: Data Display Debugger

Debugging Embedded Devices using GDB 43 Copyright © 2011-2020, 2net Ltd

Other front ends for GDB

• Eclipse CDT (C/C++ Development Toolkit)

• Microsoft Visual Studio Code

• KDevelop

• ... and others

Debugging Embedded Devices using GDB 44 Copyright © 2011-2020, 2net Ltd

Demo time

Debug using cgdb

Debugging Embedded Devices using GDB 45 Copyright © 2011-2020, 2net Ltd

watchpoints
Break when a variable changes

watch some_var

(gdb) watch i

Hardware watchpoint 2: i

(gdb) c

Continuing.

0 Hello world

Hardware watchpoint 2: i

Old value = 0

New value = 1

0x0000000000400556 in main (argc=1, argv=0x7fffffffde28) at helloworld.c:7

7 for (i = 0; i < 4; i++)

Conditional watch
watch some_var if condition

(gdb) watch i if i == 3

Debugging Embedded Devices using GDB 46 Copyright © 2011-2020, 2net Ltd

Demo time

Set a watchpoint

Debugging Embedded Devices using GDB 47 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 48 Copyright © 2011-2020, 2net Ltd

stack frames and back trace
Each function has a stack frame which contains the local (auto) variables

Show stack frames
bt

(gdb) bt

#0 addtree (p=0x0, w=0xffffdcd0 "quick") at word-count.c:39

#1 0x004008b4 in addtree (p=0x603250, w=0xfffffdcd0 "quick") at word-count.c:53

#2 0x004009fd in main (argc=1, argv=0xffffde28) at word-count.c:92

Display local variables
info local

Change current stack frame
frame N

(gdb) frame 2

Debugging Embedded Devices using GDB 49 Copyright © 2011-2020, 2net Ltd

Demo time

Stack frames

Debugging Embedded Devices using GDB 50 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 51 Copyright © 2011-2020, 2net Ltd

Debugging library code

• By default, GDB searches for source code in

• $cdir: the compile directory (which is encoded in the ELF header)

• $cwd: the current working directory
(gdb) show dir

Source directories searched: $cdir:$cwd

• You can extend the search path with the directory command:
(gdb) dir /home/chris/src/mylib

Source directories searched: /home/chris/src/mylib:$cdir:$cwd

Debugging Embedded Devices using GDB 52 Copyright © 2011-2020, 2net Ltd

Coping with a relocated sysroot
• $cdir may be wrong if the library is copied to a different directory

• For example, when installing an SDK

• You can find $cdir like this:
$ arm-poky-linux-gnueabi-objdump --dwarf helloworld | grep DW_AT_comp_dir

[...]

<1c> DW_AT_comp_dir : (indirect string, offset: 0x8):

/usr/src/debug/glibc/2.31+gitAUTOINC+6fdf971c9d-r0/git/csu

[...]

• Then you can ask GDB to substitute the embedded path with the new
one:

(gdb) set substitute-path /usr/src/debug /opt/poky/3.1.3/sysroots/cortexa7t2hf-

neon-vfpv4-poky-linux-gnueabi/usr/src/debug/

Debugging Embedded Devices using GDB 53 Copyright © 2011-2020, 2net Ltd

Demo time

Debug library code

Debugging Embedded Devices using GDB 54 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 55 Copyright © 2011-2020, 2net Ltd

Just-in-time debugging

• Both gdb and gdbserver can attach to a running process and debug it,
you just need to know the PID

• With gdbserver, you attach like this (PID 999 is an example)
gdbserver --attach :2001 999

• To detach and allow the process to run freely again:
(gdb) detach

Debugging Embedded Devices using GDB 56 Copyright © 2011-2020, 2net Ltd

Demo time

Attaching to a running program

Debugging Embedded Devices using GDB 57 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 58 Copyright © 2011-2020, 2net Ltd

Core dump

core
file

stack

mmap

heap

data

text (code)

A core file is created if:

• size is < RLIMIT_CORE

• the program has write permissions to
create a file

• not running with set-user-ID

• Set RLIMIT_CORE to un-limited using
command: ulimit -c unlimited

Debugging Embedded Devices using GDB 59 Copyright © 2011-2020, 2net Ltd

Core pattern

• By default, core files are called core and placed in the working
directory of the program

• Or, core file names are constructed according to
/proc/sys/kernel/core_pattern

• See man core(5) for details

Example: /corefiles/%e-%p

%e executable name
%p PID

Debugging Embedded Devices using GDB 60 Copyright © 2011-2020, 2net Ltd

Using GDB to analyse a core dump

• Copy the core file from the target

• Then run gdb <program executable> <core file>

arm-poky-linux-gnueabi-gdb may-crash core

...

Core was generated by `may-crash'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0046851a in gratuitous_error () at may-crash.c:7

7 *p = 42;

Debugging Embedded Devices using GDB 61 Copyright © 2011-2020, 2net Ltd

Demo time

Core dumps

Debugging Embedded Devices using GDB 62 Copyright © 2011-2020, 2net Ltd

• Toolchains

• Remote debugging with gdbserver

• GDB command files

• GDB front ends

• Stack frames

• Debugging libraries

• Attaching to a running program

• Core dumps

• Final thoughts

Debugging Embedded Devices using GDB 63 Copyright © 2011-2020, 2net Ltd

Further reading

• The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff
and Peter Jay Salzman, No Starch Press; 1st edition (28 Sept, 2008)

• GDB Pocket Reference by Arnold Robbins, O’Reilly Media; 1st edition
(12 May, 2005)

• Mastering Embedded Linux Programming by Chris Simmonds, Packt
Publishing; 2nd edition

Debugging Embedded Devices using GDB 64 Copyright © 2011-2020, 2net Ltd

Any questions?

"Looking after the Inner Penguin" blog at https://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Debugging Embedded Devices using GDB 65 Copyright © 2011-2020, 2net Ltd

https://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

	Debugging embedded devices using GDB
	Toolchains
	Remote debugging with gdbserver
	GDB command files
	GDB front ends
	Stack frames
	Debugging libraries
	Attaching to a running program
	Core dumps
	Final thoughts

