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Qualcomm®

Snapdragon™ 410E 
Embedded Platform
Brief Overview

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries
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Snapdragon 410E

CPU: 1.2 GHz quad-core ARM v8 

Cortex-A53, 32/64-bit capable

Connectivity: Integrated Wi-Fi, 

Bluetooth 4.xLE and GPS

DSP: Qualcomm® Hexagon™ DSP

Graphics: Qualcomm® Adreno™ 306 

400MHz GPU

Interfaces: 1x USB2.0, 2x MIPI-CSI, 

MIPI-DSI, SD3.0 & eMMC v4.5

with DDR support

Snapdragon 410E Embedded Platform Overview

Qualcomm Hexagon and Qualcomm Adreno are products of Qualcomm Technologies, Inc. and/or its subsidiaries

410E
(APQ8016E)

802.11b/g/n

Up to 13MP

1920x1080

DragonBoard 410c Development Board

• Upstream kernel HW support for graphics, video, audio, IO 

• Bootloader loads kernel from Android boot image
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Snapdragon 410E Embedded Platform
Path for prototyping today to many years of availability for production

Snapdragon 410E
1.2 GHz quad-core ARM v8 Cortex-A53,
32/64-bit capable

Supported
for longevity

Available through distribution
for a minimum of 10 years

from commercial
sample in 2015

Available through
Arrow Electronics

1st time Snapdragon
platforms are sold through

3rd party distribution

DragonBoard 410c
1.2 GHz quad-core ARM v8 Cortex-A53,
32/64-bit capable

https://developer.qualcomm.com/qfile/33927/snapdragon-e-selection-guide_0817_web.pdf
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Debian 
Development
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Pros and Cons of Debian Vibrant Community

Huge repository (over 50K) of prebuilt packages for over 

a dozen architectures
• arm64 and armhf are well supported

• See https://www.debian.org/mirror/size

Large, active community of supporters and contributors
• https://www.debian.org/intro/why_debian

Debian Social Contract 
• https://www.debian.org/social_contract

• contrib and non-free still supported by bug tracking system 

and mailing lists

Documentation is not particularly newbie friendly IMO
• Packaging and cross build docs assume prior knowledge of 

Debian specific tools

https://www.debian.org/mirror/size
https://www.debian.org/intro/why_debian
https://www.debian.org/social_contract
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Pros and Cons of Debian Versions 

and Support
• https://wiki.debian.org/DebianReleases

◦ At any given time, there is one stable release of Debian, 

which has the support of the Debian security team. When a 

new stable version is released, the security team will usually 

cover the previous version for a year or so, while they also 

cover the new/current version.

• https://wiki.debian.org/LTS
• Debian Long Term Support (LTS) is a 

project to extend the lifetime of all Debian 

stable releases to (at least) 5 years. 

Debian LTS will not be handled by the 

Debian security team, but by a separate 

group of volunteers and companies 

interested in making it a success.

5
years

https://wiki.debian.org/DebianReleases
https://wiki.debian.org/Teams/Security
https://www.debian.org/security/faq#lifespan
https://wiki.debian.org/LTS
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Debian Development Methodology

• Native build
◦ Many autoconf scripts and Makefiles were not designed for cross build

◦ Easy to build small packages on target

◦ ARM development machines are here now!

• "Native" Build in QEMU
◦ Often used to build complex SW projects for Debian/Ubuntu

◦ Arm64 sysroot using multistrap

• Install additional packages into the sysroot

◦ Use QEMU linux-user-mode to chroot into sysroot

◦ At least 5x slower than native system

• Cross build
◦ https://wiki.debian.org/Arm64Port#Building_packages

https://wiki.debian.org/Arm64Port#Building_packages


9

Debian SW Packaging

• Deb pkg format
◦ https://en.wikipedia.org/wiki/Deb_(file_format)

• Confusing evolution of packaging helpers:
◦ See https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf

◦ git-buildpackage (most modern)

◦ pbuilder

◦ sbuild

◦ dh (debhelper 7)

• Generate binary package from src package

◦ http://man7.org/linux/man-pages/man1/dpkg-buildpackage.1.html

• Packaging prebuilt files
◦ Documented workflows expect to create a src deb then build it

◦ I Use "dpkg-deb –build" for quick SW testing

Creating src packages and packaging prebuilt binaries

https://en.wikipedia.org/wiki/Deb_(file_format)
https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf
http://man7.org/linux/man-pages/man1/dpkg-buildpackage.1.html
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Commercial Deployment of Debian

• Friendly terms for commercial deployment

◦ https://www.debian.org/doc/manuals/debian-faq/ch-redistrib.en.html

◦ Able to pin packages

• License compliance tools

◦ https://wiki.debian.org/CopyrightReviewTools

• Commercial Support Options

◦ https://www.debian.org/consultants/

• 5 years support of stable branches from LTS Project

• Linaro Debian is based on Testing

◦ May align with productization timeframe

https://www.debian.org/doc/manuals/debian-faq/ch-redistrib.en.html
https://wiki.debian.org/CopyrightReviewTools
https://www.debian.org/consultants/
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Yocto/ 
OpenEmbedded
Development
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Yocto vs OpenEmbedded

• Simplest Overview with description of layers
◦ https://en.wikipedia.org/wiki/OpenEmbedded

• Good overview of the differences and terminology
◦ https://elinux.org/images/d/de/Elc2011_kooi.pdf

TLDR;

◦ OpenEmbedded (OE) is a build system based on BitBake, it is not a distro

◦ OE is made up of collections of BitBake build recipes for packages organized in layers

◦ Yocto provides a reference distro (Poky) using OE (and additional tools and recipes)

https://en.wikipedia.org/wiki/OpenEmbedded
https://elinux.org/images/d/de/Elc2011_kooi.pdf


1313

Pros and Cons of Yocto/OE Flexible            

and Complex
• Best for minimal build, BOM cost sensitive products

• Flexibility and control

◦ Choice of toolchain, C library, busybox, etc

• Yocto provides SW Compliance tools and some SPDX 

tooling

• HUGE learning curve and can be difficult to debug build 

issues

• Rebuilding a package may mean regenerating the rootfs

image

• Large startup time cost, needs lots of storage and 

processing power
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Yocto and OE Development Methodology

• With OE you are building a Linux Distro
◦ You control system updates, SW upgrades, critical fixes, user installable packages, (or not...)

◦ No 3rd party SW ecosystem unless you create it

◦ You manage the SDK for your distro

• Yocto SDK vs Extensible SDK
◦ External developers require SDK to make compatible SW

◦ Standard SDK

• No packaging option using standard SDK, just sysroot

◦ Extensible SDK

• Richer (and more complicated) developer experience, and more work for distro maintainer

• Great overview from previous ELC - https://www.youtube.com/watch?v=d3xanDJuXRA

Wait, What? I'm a Distro Maintainer!?

https://www.youtube.com/watch?v=d3xanDJuXRA
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Create custom 
layers and recipes

Add patches and 
config for existing 
recipes using 
pkgname.bbappend

Aggregate layers

• OE, Yocto, Linaro, Github
(usually via git submodules or 
repo)

• Define layers in bblayers.conf

Setup local.conf

• source oe-init-build-env

− puts user in build directory

− creates conf/local.conf and conf/bblayers.conf

• Edit local.conf and set target machine, arch and 
build options

• Edit bblayers.conf and configure all required 
layers

Build target image

• e.g. "bitbake core-image-minimal"

Yocto and OE Development Methodology
Distro build process
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Alternative Yocto/OE Debian Hybrid Approaches

• https://elinux.org/images/6/67/Isar-Deby_jamboree61_r1.pdf

◦ ISAR vs Deby

• https://www.cip-project.org/blog/2017/10/23/cip-launches-cip-core
◦ The implementation of the CIP Core is based on the Deby distribution, a reproducible and maintainable 

embedded Linux distribution based on poky. Deby overlays meta-debian on top of poky to build file system 

images out of Debian long-term supported source code packages.

https://elinux.org/images/6/67/Isar-Deby_jamboree61_r1.pdf
https://www.cip-project.org/blog/2017/10/23/cip-launches-cip-core
http://Deby
http://poky
http://meta-debian
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Commercial Deployment of OE/Yocto

• Yocto defines a reference Poky Distro
◦ Not used for Linaro OE RPB

• Yocto makes 2 releases a year and each release is supported for one year
◦ https://wiki.yoctoproject.org/wiki/Releases

◦ Community may provide additional support for older releases

• Commercial support for Options for Yocto/OE from 3rd parties
◦ e.g. Intrinsyc, TimeSys other OSVs

◦ https://www.openembedded.org/wiki/CommercialSupport

https://wiki.yoctoproject.org/wiki/Releases
https://www.openembedded.org/wiki/CommercialSupport
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Prototyping to 
Productization
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Planning for Productization

• Moving from upstream to downstream kernel based BSP (or vice versa)
◦ Proprietary middleware and HW acceleration

◦ Not a problem on DragonBoard 410c (unless you were using Android)

• Conflicting prebuilt libs and system toolchain with different C++ ABI
◦ Pre gcc 5 vs post (and pre 3.8 clang)

• _GLIBCXX_USE_CXX11_ABI - non-zero value means use the new C++11-conforming ABI introduced in 

GCC 5, vs the previous ABI

• Commercial support and SW updates
◦ LTS Kernels

◦ Frozen vs rolling OS and kernel versions

• Open Source License Compliance
◦ SPDX Report

Potential Gotcha's



20*Android supported on DragonBoard 410c for hobbyist projects, not for commercial use in Snapdragon 410E and 600E designs

• Linux

• Debian

• Yocto/
OpenEmbedded

• Ubuntu Core

• Windows 10 
IoT Core

OS* Middleware

• AWS Greengrass

• IBM Watson IoT

• ROS 
(Robotics Operating System)

Cloud

• AT&T M2X

• AWS IoT

• IBM Bluemix

• Microsoft
Azure IoT

Supporting great flexibility for architecting IoT solutions

Software ecosystem

*Android supported on DragonBoard 410c for hobbyist projects, not for commercial use in Snapdragon 410E and 600E designs 
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Useful Links

• Main SW page for DragonBoard 410c

◦ https://www.96boards.org/product/dragonboard410c/
• Links to Debian and OpenEmbedded pages

• Qualcomm® Developer Network projects

◦ https://developer.qualcomm.com/project

• Debian Resources

◦ https://www.debian.org/support

• OpenEmbedded

◦ https://github.com/96boards/documentation/blob/master/consumer/guides/open_embedded.md

• Yocto

◦ https://www.yoctoproject.org/docs/2.4.1/dev-manual/dev-manual.html

• Arrow Electronics: DragonBoard 410C and/or accessories

◦ https://www.arrow.com/en/campaigns/the-dragonboard-is-here

https://www.96boards.org/product/dragonboard410c/
https://developer.qualcomm.com/project
https://www.debian.org/support
https://github.com/96boards/documentation/blob/master/consumer/guides/open_embedded.md
https://www.yoctoproject.org/docs/2.4.1/dev-manual/dev-manual.html
https://www.arrow.com/en/campaigns/the-dragonboard-is-here
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