
Speeding up Linux
Development with Debian
and Open Embedded on
DragonBoard™ 410c
Mark Charlebois

Director Engineering

Qualcomm Technologies, Inc.

ELC 2018March 2018 Portland

2

Qualcomm®

Snapdragon™ 410E
Embedded Platform
Brief Overview

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries

3

Snapdragon 410E

CPU: 1.2 GHz quad-core ARM v8

Cortex-A53, 32/64-bit capable

Connectivity: Integrated Wi-Fi,

Bluetooth 4.xLE and GPS

DSP: Qualcomm® Hexagon™ DSP

Graphics: Qualcomm® Adreno™ 306

400MHz GPU

Interfaces: 1x USB2.0, 2x MIPI-CSI,

MIPI-DSI, SD3.0 & eMMC v4.5

with DDR support

Snapdragon 410E Embedded Platform Overview

Qualcomm Hexagon and Qualcomm Adreno are products of Qualcomm Technologies, Inc. and/or its subsidiaries

410E
(APQ8016E)

802.11b/g/n

Up to 13MP

1920x1080

DragonBoard 410c Development Board

• Upstream kernel HW support for graphics, video, audio, IO

• Bootloader loads kernel from Android boot image

4

Snapdragon 410E Embedded Platform
Path for prototyping today to many years of availability for production

Snapdragon 410E
1.2 GHz quad-core ARM v8 Cortex-A53,
32/64-bit capable

Supported
for longevity

Available through distribution
for a minimum of 10 years

from commercial
sample in 2015

Available through
Arrow Electronics

1st time Snapdragon
platforms are sold through

3rd party distribution

DragonBoard 410c
1.2 GHz quad-core ARM v8 Cortex-A53,
32/64-bit capable

https://developer.qualcomm.com/qfile/33927/snapdragon-e-selection-guide_0817_web.pdf

5

Debian
Development

66

Pros and Cons of Debian Vibrant Community

Huge repository (over 50K) of prebuilt packages for over

a dozen architectures
• arm64 and armhf are well supported

• See https://www.debian.org/mirror/size

Large, active community of supporters and contributors
• https://www.debian.org/intro/why_debian

Debian Social Contract
• https://www.debian.org/social_contract

• contrib and non-free still supported by bug tracking system

and mailing lists

Documentation is not particularly newbie friendly IMO
• Packaging and cross build docs assume prior knowledge of

Debian specific tools

https://www.debian.org/mirror/size
https://www.debian.org/intro/why_debian
https://www.debian.org/social_contract

77

Pros and Cons of Debian Versions

and Support
• https://wiki.debian.org/DebianReleases

◦ At any given time, there is one stable release of Debian,

which has the support of the Debian security team. When a

new stable version is released, the security team will usually

cover the previous version for a year or so, while they also

cover the new/current version.

• https://wiki.debian.org/LTS
• Debian Long Term Support (LTS) is a

project to extend the lifetime of all Debian

stable releases to (at least) 5 years.

Debian LTS will not be handled by the

Debian security team, but by a separate

group of volunteers and companies

interested in making it a success.

5
years

https://wiki.debian.org/DebianReleases
https://wiki.debian.org/Teams/Security
https://www.debian.org/security/faq#lifespan
https://wiki.debian.org/LTS

8

Debian Development Methodology

• Native build
◦ Many autoconf scripts and Makefiles were not designed for cross build

◦ Easy to build small packages on target

◦ ARM development machines are here now!

• "Native" Build in QEMU
◦ Often used to build complex SW projects for Debian/Ubuntu

◦ Arm64 sysroot using multistrap

• Install additional packages into the sysroot

◦ Use QEMU linux-user-mode to chroot into sysroot

◦ At least 5x slower than native system

• Cross build
◦ https://wiki.debian.org/Arm64Port#Building_packages

https://wiki.debian.org/Arm64Port#Building_packages

9

Debian SW Packaging

• Deb pkg format
◦ https://en.wikipedia.org/wiki/Deb_(file_format)

• Confusing evolution of packaging helpers:
◦ See https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf

◦ git-buildpackage (most modern)

◦ pbuilder

◦ sbuild

◦ dh (debhelper 7)

• Generate binary package from src package

◦ http://man7.org/linux/man-pages/man1/dpkg-buildpackage.1.html

• Packaging prebuilt files
◦ Documented workflows expect to create a src deb then build it

◦ I Use "dpkg-deb –build" for quick SW testing

Creating src packages and packaging prebuilt binaries

https://en.wikipedia.org/wiki/Deb_(file_format)
https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf
http://man7.org/linux/man-pages/man1/dpkg-buildpackage.1.html

10

Commercial Deployment of Debian

• Friendly terms for commercial deployment

◦ https://www.debian.org/doc/manuals/debian-faq/ch-redistrib.en.html

◦ Able to pin packages

• License compliance tools

◦ https://wiki.debian.org/CopyrightReviewTools

• Commercial Support Options

◦ https://www.debian.org/consultants/

• 5 years support of stable branches from LTS Project

• Linaro Debian is based on Testing

◦ May align with productization timeframe

https://www.debian.org/doc/manuals/debian-faq/ch-redistrib.en.html
https://wiki.debian.org/CopyrightReviewTools
https://www.debian.org/consultants/

11

Yocto/
OpenEmbedded
Development

12

Yocto vs OpenEmbedded

• Simplest Overview with description of layers
◦ https://en.wikipedia.org/wiki/OpenEmbedded

• Good overview of the differences and terminology
◦ https://elinux.org/images/d/de/Elc2011_kooi.pdf

TLDR;

◦ OpenEmbedded (OE) is a build system based on BitBake, it is not a distro

◦ OE is made up of collections of BitBake build recipes for packages organized in layers

◦ Yocto provides a reference distro (Poky) using OE (and additional tools and recipes)

https://en.wikipedia.org/wiki/OpenEmbedded
https://elinux.org/images/d/de/Elc2011_kooi.pdf

1313

Pros and Cons of Yocto/OE Flexible

and Complex
• Best for minimal build, BOM cost sensitive products

• Flexibility and control

◦ Choice of toolchain, C library, busybox, etc

• Yocto provides SW Compliance tools and some SPDX

tooling

• HUGE learning curve and can be difficult to debug build

issues

• Rebuilding a package may mean regenerating the rootfs

image

• Large startup time cost, needs lots of storage and

processing power

14

Yocto and OE Development Methodology

• With OE you are building a Linux Distro
◦ You control system updates, SW upgrades, critical fixes, user installable packages, (or not...)

◦ No 3rd party SW ecosystem unless you create it

◦ You manage the SDK for your distro

• Yocto SDK vs Extensible SDK
◦ External developers require SDK to make compatible SW

◦ Standard SDK

• No packaging option using standard SDK, just sysroot

◦ Extensible SDK

• Richer (and more complicated) developer experience, and more work for distro maintainer

• Great overview from previous ELC - https://www.youtube.com/watch?v=d3xanDJuXRA

Wait, What? I'm a Distro Maintainer!?

https://www.youtube.com/watch?v=d3xanDJuXRA

15

Create custom
layers and recipes

Add patches and
config for existing
recipes using
pkgname.bbappend

Aggregate layers

• OE, Yocto, Linaro, Github
(usually via git submodules or
repo)

• Define layers in bblayers.conf

Setup local.conf

• source oe-init-build-env

− puts user in build directory

− creates conf/local.conf and conf/bblayers.conf

• Edit local.conf and set target machine, arch and
build options

• Edit bblayers.conf and configure all required
layers

Build target image

• e.g. "bitbake core-image-minimal"

Yocto and OE Development Methodology
Distro build process

16

Alternative Yocto/OE Debian Hybrid Approaches

• https://elinux.org/images/6/67/Isar-Deby_jamboree61_r1.pdf

◦ ISAR vs Deby

• https://www.cip-project.org/blog/2017/10/23/cip-launches-cip-core
◦ The implementation of the CIP Core is based on the Deby distribution, a reproducible and maintainable

embedded Linux distribution based on poky. Deby overlays meta-debian on top of poky to build file system

images out of Debian long-term supported source code packages.

https://elinux.org/images/6/67/Isar-Deby_jamboree61_r1.pdf
https://www.cip-project.org/blog/2017/10/23/cip-launches-cip-core
http://Deby
http://poky
http://meta-debian

17

Commercial Deployment of OE/Yocto

• Yocto defines a reference Poky Distro
◦ Not used for Linaro OE RPB

• Yocto makes 2 releases a year and each release is supported for one year
◦ https://wiki.yoctoproject.org/wiki/Releases

◦ Community may provide additional support for older releases

• Commercial support for Options for Yocto/OE from 3rd parties
◦ e.g. Intrinsyc, TimeSys other OSVs

◦ https://www.openembedded.org/wiki/CommercialSupport

https://wiki.yoctoproject.org/wiki/Releases
https://www.openembedded.org/wiki/CommercialSupport

18

Prototyping to
Productization

19

Planning for Productization

• Moving from upstream to downstream kernel based BSP (or vice versa)
◦ Proprietary middleware and HW acceleration

◦ Not a problem on DragonBoard 410c (unless you were using Android)

• Conflicting prebuilt libs and system toolchain with different C++ ABI
◦ Pre gcc 5 vs post (and pre 3.8 clang)

• _GLIBCXX_USE_CXX11_ABI - non-zero value means use the new C++11-conforming ABI introduced in

GCC 5, vs the previous ABI

• Commercial support and SW updates
◦ LTS Kernels

◦ Frozen vs rolling OS and kernel versions

• Open Source License Compliance
◦ SPDX Report

Potential Gotcha's

20*Android supported on DragonBoard 410c for hobbyist projects, not for commercial use in Snapdragon 410E and 600E designs

• Linux

• Debian

• Yocto/
OpenEmbedded

• Ubuntu Core

• Windows 10
IoT Core

OS* Middleware

• AWS Greengrass

• IBM Watson IoT

• ROS
(Robotics Operating System)

Cloud

• AT&T M2X

• AWS IoT

• IBM Bluemix

• Microsoft
Azure IoT

Supporting great flexibility for architecting IoT solutions

Software ecosystem

*Android supported on DragonBoard 410c for hobbyist projects, not for commercial use in Snapdragon 410E and 600E designs

20

21

Useful Links

• Main SW page for DragonBoard 410c

◦ https://www.96boards.org/product/dragonboard410c/
• Links to Debian and OpenEmbedded pages

• Qualcomm® Developer Network projects

◦ https://developer.qualcomm.com/project

• Debian Resources

◦ https://www.debian.org/support

• OpenEmbedded

◦ https://github.com/96boards/documentation/blob/master/consumer/guides/open_embedded.md

• Yocto

◦ https://www.yoctoproject.org/docs/2.4.1/dev-manual/dev-manual.html

• Arrow Electronics: DragonBoard 410C and/or accessories

◦ https://www.arrow.com/en/campaigns/the-dragonboard-is-here

https://www.96boards.org/product/dragonboard410c/
https://developer.qualcomm.com/project
https://www.debian.org/support
https://github.com/96boards/documentation/blob/master/consumer/guides/open_embedded.md
https://www.yoctoproject.org/docs/2.4.1/dev-manual/dev-manual.html
https://www.arrow.com/en/campaigns/the-dragonboard-is-here

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you!

Nothing in these materials is an offer to sell any of the

components or devices referenced herein.

©2018 Qualcomm Technologies, Inc. and/or its affiliated

companies. All Rights Reserved.

Qualcomm, Snapdragon, Adreno, Hexagon, Krait and

DragonBoard are trademarks of Qualcomm Incorporated,

registered in the United States and other countries. Other

products and brand names may be trademarks or registered

trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm

Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries

or business units within the Qualcomm corporate structure, as

applicable. Qualcomm Incorporated includes Qualcomm’s licensing

business, QTL, and the vast majority of its patent portfolio. Qualcomm

Technologies, Inc., a wholly-owned subsidiary of Qualcomm

Incorporated, operates, along with its subsidiaries, substantially all of

Qualcomm’s engineering, research and development functions, and

substantially all of its product and services businesses, including its

semiconductor business, QCT.

