
Eystein Stenberg
CTO

Mender.io

Securing the Connected Car

The software defined car

1990 2000 2010 2020

Hardware enabled Software enabled Software defined

Telematics Infotainment Connected
Assisted
driving

AutonomousElectronics

About me

● Eystein Stenberg

○ 7 years in systems security management

○ M. Sc., Computer Science, Cryptography

○ eystein@mender.io

● Mender.io

○ Over-the-air updater for Linux, Yocto

○ Under active development

○ Open source

mailto:eystein@mender.io
mailto:eystein@mender.io

Session overview

● Opportunities with the software defined car

● Anatomy of an attack: security risks of the
connected car

● The patching problem & solution designs

Software defined car: New revenue streams

● Tesla

○ Semi-autonomous Autopilot feature allows current Model S owners to add the feature for
$2,500 USD when they order the vehicle or they can pay $3,000 USD to upgrade later

○ An OTA update system allows for easy additional software purchases after buyers drive
their cars off the lot

● Morgan Stanley report

○ “Selling content to occupants of the car could be a significant new revenue stream”

● Navigant Research

○ Automakers could add up to $27.1B/annually from services such as car sharing and more

Cost savings by using open source platforms
IVI stack

Hardware

Board support pkg.

Operating system

Middleware

Apps

HMI

Cost

10%

30%

60%

Differentiation

Focus on
open source
here

● Lower layers are expensive and
provides no differentiation

● Use open source here to

○ Shorten time-to-market

○ Lower cost

○ Reallocate development
to differentiating features

OTA updater

The software defined car requires OTA updates

● Increased software complexity requires more frequent improvements

● ABI Research

○ Estimates that 1/3rd of current recalls are for problems that could be fixed OTA

● IHS Automotive

○ Estimates OTA updates will save carmakers $35B in 2022

● Fiat Chrysler hack required a recall of 1.4 million vehicles
○ Software security flaw that allowed hackers to takeover Jeep Cherokee
○ The flaw could have been remediated via software over-the-air

Jeep Cherokee hacked in July 2015

● Presented at Black Hat USA 2015
○ Charlie Miller

○ Chris Valasek

● Remote exploit giving full control
of the car

● Clearly demonstrates physical
safety risk

● No way to fix remotely

● 1.4 million cars recalled

Jeep Cherokee Head Unit with Wifi

Wifi hotspot offered
as a service

● Cherokee customers can buy wifi
subscription as an add-on (~$40/month)

● Connect devices in the car to the car’s
wifi to get online (phones, tablets, …)

● Wifi is password protected

“Head unit”,
“IVI”

Wifi-based breach: Short-range

● Wifi password based on system time after
provisioning

● January 01 2013 00:00 GMT +- 1 minute

● Multimedia system breached due to
software vulnerability

● Scope: Control music player/radio/volume
and track GPS coordinates when within
wifi range

Guessable
password

Software
vulnerability

Cellular-based breach: Country-wide

● Scope: Control music player/radio/volume
and track GPS coordinates countrywide

● Can also select a specific Jeep based on its
GPS-coordinates

Breach Sprint
Cellular network

Software
vulnerability

The Controller Area Network (CAN) bus

● The CAN bus connects ~70 electronic
control units (ECUs), including engine
control, transmission, airbags, braking

● V850 chip is designed to only read from the
CAN bus, to isolate components

V850 chip

Read-only

Diagnostics

Unauthorized update to write to the
CAN bus

● The head unit can update the firmware
of the V850

● Firmware update authenticity not
checked properly

V850 chip

Full control

Malicious firmware
update

Putting it together

Lessons

● Wifi hotspot password was predictable

● Remotely accessible service (in head unit)
was vulnerable (and not updated)

● Firmware update (for V850) did not have
proper authenticity checks

● The only way to fix the vulnerabilities is
through a manual update (by customer or
dealership)

FW update

Cellular breach

Vulnerability

More complexity leads to larger attack surface

● 1-25 bugs per 1000 lines of code*
○ Assume that all software components have vulnerabilities

● Rely on well-maintained software and keep it updated
○ Open source vs. proprietary is a red herring
○ Do not build all the software in-house

● Principle of least privilege

● Separation of privilege

● Kerckhoff’s principle

*Source: Steve McConnell, Code Complete

Security patching is done too late

60 days: >90% probability it is exploited

110 days: remediation time avg.

5-10 days: <10% probability it is exploited

Source: How the Rise in Non-Targeted Attacks Has Widened the Remediation Gap, Kenna Security

Why security patching happens too late

● The value is invisible until too late

● Too costly or risky

○ Manual? Too expensive to integrate updater?

○ Requires downtime of production? Risk of breaking production?

● Politics

● How often do you patch?

○ Do you have a way to do it? A process?

○ Often not a core competence and not a priority to develop updater

Patching connected devices is harder

● No/expensive physical access
○ Need failure management

● Unreliable power
○ What if power disappears in the middle of patching?

● Unreliable (wireless) network connectivity
○ Handle partial downloads

○ Ideally resume downloads in expensive networks like 3G

● Public and insecure (wireless) networks
○ Can someone inject arbitrary code during the update process?

○ Verify authenticity of update

Embedded client patching process overview

Detect update Download Integrity Authenticate

DecryptExtractInstall

Checksum
Signature
verification

Roll back?

Important, but
not trivial May not need this

Choice of update type has tradeoffs

Full image Package (opkg, …) tar.gz Docker/Containers

Download size Large* Small Small Medium

Installation time Long* Short Short Short

Rollback Yes (dual partition) Hard Hard Yes

Consistency Yes Medium Hard Yes

Design impact Bootloader,
Partition layout

Package manager tar, ... Kernel, docker

* Can mitigate with compression or binary diffs

What can
go wrong?

Strategies to reduce the risk of bricking

● Integrity checking
○ This must be done

○ Easy to implement

● Rollback support
○ This should be a requirement: power loss, installation error, etc.

○ Could be hard depending on update type (tarball, package)

● Phased rollout
○ I.e. don’t deploy update to all devices in one go

○ Most do this to some extent: test & production environments

○ Can be more granular on device population (1%, 10%, 25%, 50%, …)

Prepare for securing the software defined car

● Open source software where no differentiation

● Well-maintained software

● Over-the-air updates

● Apply well-known security design principles

