
 LLVMLinux Project

LLVMLinux: The Linux Kernel
with Dragon Wings

Presented by:

 Behan Webster
 (LLVMLinux project lead)

Presentation Date: 2013.10.24

 LLVMLinux Project

What is Clang/LLVM?

 LLVMLinux Project

LLVM is a Toolchain Toolkit

A modular set of libraries for building tools

Compiler, linker

Source code analysis tools

Meta data extraction from code

Code refactoring tools

Tight integration with IDEs

 LLVMLinux Project

LLVM Toolchain Suite

Clang (C/C++/Objective-C compiler)

Compiler-rt (highly tuned low level operations)

LLD and MC Linker (Linkers)

Static Analyzer (checkers)

LLDB (debugger)

And more...

 LLVMLinux Project

Why Would I Want to
Use Clang/LLVM to
Compile the Linux Kernel?

 LLVMLinux Project

Fast Compiles

Clang compiles code faster and use less memory
than other toolchains

OpenBenchmarking.orgSeconds, Less Is Better

Timed ImageMagick Compilation v6.8.1-10
Time To Compile

GCC 4.7.2

GCC 4.8.0

LLVM Clang 3.2

LLVM Clang 3.3 SVN

13 26 39 52 65

SE +/- 0.07
58.05

SE +/- 0.12
59.67

SE +/- 0.11
25.03

SE +/- 0.10
24.79

Powered By Phoronix Test Suite 4.4.1

http://www.phoronix.com/scan.php?page=article&item=llvm_33svn_competes&num=1

 LLVMLinux Project

Fast Moving Project
In just a few years Clang has reached and in
some cases surpassed what other toolchains
can do

OpenBenchmarking.orgLoop Time, Less Is Better

LAMMPS Molecular Dynamics Simulator v1.0
Test: Rhodopsin Protein

GCC 4.7.2

GCC 4.8.0

LLVM Clang 3.2

LLVM Clang 3.3 SVN

11 22 33 44 55

SE +/- 0.18
49.36

SE +/- 0.14
48.46

SE +/- 0.07
49.71

SE +/- 0.09
41.36

Powered By Phoronix Test Suite 4.4.1

1. (CXX) g++ options: -lfftw -lmpich

http://www.phoronix.com/scan.php?page=article&item=llvm_33svn_competes&num=1

 LLVMLinux Project

One Toolchain

Compiler extensions only need to be written
once

LLVM is already being used in a lot of domains:

Audio

Video (llvmpipe)

CUDA

Renderscript

 Kernel

 Userspace

 Applications

 Documentation

 HPC

 LLVMLinux Project

LLVM License

Licensed under the "UIUC" BSD-Style license

Embeddable into many other projects

Wide range of full-time developers building the
LLVM project and derived technologies

Wide development audience using LLVM

 LLVMLinux Project

Static Analyzer

http://littlechina.org/~vcgomes/bluez-static-analysis/2012-02-10-1/report-n7KJtW.html#EndPath

 LLVMLinux Project

Fix-it Hints
"Fix-it" hints provide advice for fixing small,
localized problems in source code.

$ clang t.c
t.c:5:28: warning: use of GNU old-style field designator extension struct
point origin = { x: 0.0, y: 0.0 };
 ~~ ^
 .x =

t.c:5:36: warning: use of GNU old-style field designator extension struct
point origin = { x: 0.0, y: 0.0 };
 ~~ ^
 .y =

gcc 4.8 now does similar things

This is an example of clang driving improvements to gcc

 LLVMLinux Project

Security
Talking about Linux kernel security surrounding
recent events involving the NSA...

"I also think this is a reason that having multiple
independent compilers that are structurally very
different (gcc/llvm) could give a potential security
advantage. It's harder in practice to create a "rtt"
attack that works simultaneously against two
independently moving targets."

- Michael K Johnson

 LLVMLinux Project

Other Kinds of Things

Google is using a tool based on LLVM to look
for common bugs in their vast library code

Once bugs are found they are fixed
automatically with minimal human involvement

http://youtu.be/mVbDzTM21BQ

Conceivably something similar could be built to
look for common bugs in the kernel code so
that bugs could be found earlier

 LLVMLinux Project

Clang/LLVM already used by
Linux Projects

LLVM part of Renderscript compiler in Android

Supported on ARM, MIPS and x86

Clang part of the Android NDK

LLVM is used in Gallium3D

llvmpipe driver, Clover (Open CL)

GLSL shader optimizer

Clang built Debian - Sylvestre Ledru

 LLVMLinux Project

The LLVMLinux Project

 LLVMLinux Project

The LLVMProject Goals

Fully build the Linux kernel for multiple
architectures, using the Clang/LLVM toolchain

Discover LLVM/Kernel issues early and find fixes
quickly across both communities

Upstream patches to the Linux Kernel and LLVM
projects

Bring together like-minded developers

 LLVMLinux Project

LLVMLinux Automated
Build Framework

git clone http://git.linuxfoundation.org/llvmlinux.git

The framework consists of scripts and patches

Automates fetching, patching, and building

LLVM, Clang,

Toolchains for cross assembler, linker

Linux Kernel

QEMU, and test images

http://git.linuxfoundation.org/llvmlinux.git

 LLVMLinux Project

LLVMLinux Automated
Build Framework

Patch management using quilt

Choice of clang compiler

From-source, prebuilt, native

Choice of gnu cross-toolchain (as, ld)

Codesourcery, Linaro, Android, native
$ cd targets/vexpress

$ make CLANG_TOOLCHAIN=prebuilt kernel-build

$ make CROSS_ARM_TOOLCHAIN=linaro kernel-build

 LLVMLinux Project

LLVMLinux Automated
Build Framework

Current support for various targets

X86_64 (mainline)

Versatile Express (QEMU testing mainline)

Qualcomm MSM (3.4)

Raspberry-pi (3.2 and 3.6)

Nexus 7 (3.1.10), Galaxy S3 (3.0.59 in progress)

BeagleBone (3.8 in progress)

Arm64 (mainline in progress)

 LLVMLinux Project

Buildbot

Buildbot Continuous Integration Server

Builds and tests LLVMLinux Code

Builds and retests on every commit to the
LLVM, Clang, and the Linux Kernel repos

Also builds/tests the patched Linux Kernel with
gcc to make sure not to break compatibility

Runs LTP tests in QEMU for Versatile Express

 LLVMLinux Project

Status of Building Linux
Kernel With Clang/LLVM

 LLVMLinux Project

LLVM for Linux Status

All required patches are now upstream

The kernel can be compiled with Clang 3.3
(with the LLVMLinux kernel patches)

Any new issues introduced to LLVM which
break the Kernel are being fixed as they are
being found by the LLVMLinux team with help
from LLVM developers

Some further fixes have made it into what will
be released as 3.4

 LLVMLinux Project

Challenges Using
Clang/LLVM to Build

the Linux Kernel

 LLVMLinux Project

Challenges Using Clang for
Cross Compilation

GCC Dependencies:

gcc conforms to gnu90, clang to gnu99

Kernel currently expects some
undocumented GCC behavior

Unsupported GCC extensions and flags

__builtin function differences

 LLVMLinux Project

Kbuild is GCC specific

GCC returns false for unsupported flag and
issues warning

Clang returns true for unused flag and issues
warning

This means that special versions of things like
cc-option macro need to be provided

Kbuild requires patches to support clang

New in clang 3.4svn, follows gcc behaviour

 LLVMLinux Project

Unsupported GCC
Language Extentions

Named register variables are not supported
 register unsigned long current_stack_pointer asm("esp") __used;

Proposed by LLVMLinux project

__builtin_stack_pointer()

Arch independent, in line with existing __builtin_frame_pointer()

Patch for LLVM available, looking to have a similar patch for gcc

Proposed by Jakob Stoklund Olesen (works with gcc and LLVM 3.3):

 register unsigned long current_stack_pointer asm("esp") __used;
 asm("" : "=r"(esp));

 LLVMLinux Project

Unsupported GCC
Language Extentions

Variable Length Arrays In Structs (VLAIS) aren't supported in
Clang (gcc extension)

struct foo_t {
 char a[n];/* Explicitly not allowed by C99/C11 */
 int b;
} foo;

VLAs outside of structures are supported (gcc and llvm)

char foo[n];

VLAIS is used in the Linux kernel in the netfilter code, the
kernel hashing (HMAC) routines, gadget driver, and possibly
other places

 LLVMLinux Project

Nested Functions

Thinkpad ACPI Driver still uses Nested Functions

static void hotkey_compare_and_issue_event(
 struct tp_nvram_state *oldn,
 struct tp_nvram_state *newn,
 const u32 event_mask)
{
…
 void issue_volchange(const unsigned int oldvol,
 const unsigned int newvol)
…
 void issue_brightnesschange(const unsigned int oldbrt,
 const unsigned int newbrt)
…

Patch submitted (haven't heard back from the maintainer)

 LLVMLinux Project

Incompatibilities with GCC

__attribute ((alias)) is used for modules

An alias doesn't copy over other attributes

Since __section() isn't copied over, init and exit
link sections need to be reapplied

The various section mismatches reported
during the build may be related to similar issues

 LLVMLinux Project

Extern inline is different for
gnu89 and gnu99

GNU89

Function will be inlined where it is used

No function definition is emitted

A non-inlined function can also be provided

GNU99 (C99)

Function will be inlined where it is used

An external function is emitted

No other function of the same name can be provided.

Solution? Use “static inline” instead.

 LLVMLinux Project

--- a/crypto/shash.c
+++ b/crypto/shash.c
@@ -67,7 +67,8 @@ EXPORT_SYMBOL_GPL(crypto_shash_setkey);
 static inline unsigned int shash_align_buffer_size(unsigned len,
 unsigned long mask)
 {
- return len + (mask & ~(__alignof__(u8 __attribute__ ((aligned))) - 1));
+ typedef __attribute__ ((aligned)) u8 u8_aligned;
+ return len + (mask & ~(__alignof__(u8_aligned) - 1));
 }

Clang has troubles with this statement as written

Making it into 2 lines makes it more readable and
works in both compilers

This code doesn't work in
clang but does in gcc

 LLVMLinux Project

Challenges Using Clang for
Cross Compilation

The Integrated Assembler (IA) can't be used

Doesn't support .code16

ARM Kernel code isn't in Unified Format

Dependence on GNU toolchain for assembly
and linking (as and ld)

Configuring GNU toolchain dependencies
(-gcc-toolchain <path>)

 LLVMLinux Project

Kernel Patches

The patches that still need to make it upstream

Architecture Number of patches
all 18
arm 11
aarch64 5
x86_64 8

 LLVMLinux Project

What's Left to Do?

 LLVMLinux Project

Todos

Upstream patches

Test and fix drivers/subsystems which haven't
been tested yet or are known not to work

http://llvm.linuxfoundation.org/index.php/Broken_kernel_options

Fix Segment mismatch and merged globals

Enable Clang IA (i.e. rewriting ARM ASM in
unified format)

 LLVMLinux Project

How Can I Help?

Make it known you want to be able to use
Clang to compile the kernel

Test LLVMLinux patches

Report bugs to the mailing list

Help get LLVMLinux patches upstream

Work on unsupported features and Bugs

Submit new targets and arch support

Patches welcome

 LLVMLinux Project

Thank you

http://llvm.linuxfoundation.org

Who wouldn't
want a penguin

with dragon
wings?

 LLVMLinux Project

Contribute to the
LLVMLinux Project

Project wiki page

http://llvm.linuxfoundation.org

Project Mailing List

http://lists.linuxfoundation.org/mailman/listinfo/llvmlinux

http://lists.linuxfoundation.org/pipermail/llvmlinux/

IRC Channel

 #llvmlinux on OFTC
http://buildbot.llvm.linuxfoundation.org/irclogs/OFTC/%23llvmlinux/

	Marketing Plan
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

