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Who am I?

Michael Brown – Dell EMC

I am a 17 year veteran of Dell. During that time, I have done a lot around build architecture. Most 

recently I led the yocto-ization of the Dell EMC Firmware builds, porting the build of the Dell IDRAC 

and CMC from a hand-rolled monolithic build over to a fully-componentized Yocto build. I designed 

everything from individual component autotools layout up to the entire Yocto layout.

I am currently the lead technologist for embedded management on our next generation chassis.

Eventually they are going to figure out that they never revoked my git admin access when I turned 

over all those servers to our official build team.
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Problem Statement

• I’m going to talk about keeping development environment current, NOT updating devices

– Often not addressed. The obvious way to do this is often the hardest and riskiest.

• Keeping development up to date is hard!

• Breakages are tough in development and after a few, managers and leads get gun shy

• Worst case scenario is development can be broken, stopping entire development teams

• On the other hand, delaying updates can be bad: security issues, interlocking dependencies, etc

can make it hard to do piecemeal updates. Getting a high severity defect patched quickly can be 

impossible. How do you update that 2.4 kernel, glibc 2.1, and gcc 3.2? (um, asking for a friend…)

• I’m giving this talk specifically addressing Yocto, however the concepts can be applied in many 

environments
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Dell EMC firmware development environment

• This update strategy has been in use on the Dell EMC firmware development team for 2 years 
now. We’ve done 4 major Yocto updates using this method.

• Dell EMC firmware team is large and encompasses:
– IDRAC (Embedded Server Management) for 12G and 13G servers

– Chassis Management Controller (CMC) for M1000e and other chassis.

– IDRAC for our in-development servers and CMC for our in-development chassis

– IDRAC and CMC codebases built from one Yocto environment starting with our next generation 
servers

• Dell EMC Yocto environment:

– Base Yocto environment: Poky plus select meta-oe components.

– Roughly 300 Dell EMC components.

– Each component is a standalone GIT repositoriy with a standalone Autotools build producing a library or set 
of binaries

– Tens of thousands of commits across these per release
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Development Setup

• Android “repo” tool: https://source.android.com/source/using-repo.html

– We have about 300 repositories to check out to do a build

– Full from-source build

– Highly recommend versioning everything identically: same branches, tags, etc

everywhere

– Our branch naming scheme:

› rel/14g/master

› rel/14g/1.0/master

› rel/14g/1.1/master

› Hierarchal namespace to sort tags and branches

› Never use “master” because it is very difficult to use external git repos that also use “master”

https://source.android.com/source/using-repo.html
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The Big Idea

• The core of this method is to have an extra build called “poky-next”.
– (cue audience gasp: we waited through 4 slides to hear this?)

• Yes, this is really basic, but it seems to be nonobvious.

• Here are the core requirements/ideas
– The poky-next build is a parallel build structure. You can build either using regular poky, or with poky-next

– Builds your same source code as the “normal” build (for all non-yocto components)

– Small units of work: update frequently so that each individual update is manageable.

– Separate source control copy for the poky and poky-next repos so that you can carefully control the flow of 
updates into the tree

• Benefits:

– Work on Hard Stuff ™ without breaking main development stream.
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Directory Structure

References

 New directory “.next” is 
created.

 The .next/build/ directory 
config has bblayer files that 
reference poky, meta-oe, and 
other upstream meta layers 
under the .next directory

 The .next/build/ directory 
config bblayer files reference 
the main layer meta-drac and 
other local meta layers, 
however, for complicated 
cases, these  can be 
branched as well
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Git repositories

Upstream poky.git
(or mirror)

• Morty

• Krogoth

idrac/poky.git

• rel/14g/master

idrac/poky-next.git

• rel/14g/master

Our design has everything on the same branch, so we have multiple repository copies 

that have our branch (re/14g/master) tracking different upstream branches (Morty, 

Krogoth, etc). You could easily design something similar with one repository and 

multiple branches.
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Repository Manifest

<?xml version="1.0" encoding="UTF-8"?>

<manifest>

<remote  name="origin" fetch=".." />

<default revision=“rel/14g/master" remote="origin" sync-s="true" sync-j="4" sync-c="true" />

<project path="poky" name="idrac/poky.git" />

<project path="meta-drac" name="idrac/meta.git" />

<project path="build/configs" name="idrac/buildconfigs.git" />

<project path=".next/poky" name="idrac/poky-next.git" />

<project path="externalsrc/dell-emc-example" name="idrac/dell-emc-example.git" />

</manifest>
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Branching Overview: poky-next
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Benefits

• Great for long-lived development projects

• Smaller units of work for doing updates

• Predictable

• Control over when updates go into production

– Easier to work with scheduling disparities between upstream and your release schedule.

• Extensively testable – Jenkins (or equivalent) can do daily/continuous builds of the .next build.

• Less stuff breaks when you do smaller updates
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Taking it further

• The .next concept works well for in-development releases to keep them up-to-date

• Once you have done a release, switch concepts to “.minor”. Instead of following upstream 

“master”, follow the upstream fixes branch.

• Even further: for long-lived released products, combine the .minor and .next concepts to keep 

devices completely up to date per release, and then migrate them from Yocto release to Yocto

release
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Branching Overview: poky minor
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